首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

3.
DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.  相似文献   

4.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

5.
为探讨观赏竹叶片异质性的机理,根据麻竹(Dendrocalamus latiflorus)和绿竹(Bambusa oldhamii)叶绿体基因组序列开发SSR分子标记。结果表明,在麻竹和绿竹叶绿体基因组中分别存在87和86个SSR位点,其中三核苷酸重复类型最多,其次为单核苷酸重复类型。根据SSR位点设计21对引物,其中11对引物对6竹种能够扩增出稳定、清晰的条带,且具有多态性,引物有效率达到52.4%。聚类分析表明,6竹种可分为两大类群,与形态学分类结果基本一致。有4对引物在菲白竹(Pleioblastus fortunei)和白纹椎谷笹(Sasaella glabra f.albo-striata)的花叶中具有多态性,可作为区分观赏竹叶片异质性的分子标记。  相似文献   

6.
Retrotransposon-based molecular markers are a powerful tool for mapping and diversity studies. The scarcity of retrotransposon long terminal repeat (LTR) sequences limits the application of retrotransposon-based molecular marker systems. Here, we isolated two novel complete Ty1-copia retrotransposons (CTcrm1 and CTcrm2) in apple using a genome walking strategy. The CTcrm retrotransposons are nearly 5 kb long, and they have all the features of Ty1-copia retrotransposons. The differences in gene organization and nucleotide sequence length between the CTcrm retrotransposons and other reported complete retrotransposons in apple showed that CTcrm1 and CTcrm2 are the first two distinct complete Ty1-copia retrotransposons in the apple genome. To investigate the potential utility of the two retrotransposons as molecular markers, primers complementary to the CTcrm LTRs were designed to develop sequence-specific amplification polymorphism markers for discriminating bud sports of Fuji apple. Multiple polymorphisms corresponding to CTcrm1 and CTcrm2 were detected and could easily be used to discriminate bud sports from their Fuji progenitor, as well as from each other.  相似文献   

7.
Long terminal repeat (LTR)-retrotransposons are mobile genetic elements that are ubiquitous in plants and constitute a major portion of their nuclear genomes. LTR- retrotransposons possess unique properties that make them appropriate for investigating relationships between populations, varieties and closely related species. Myrtus communis L. is an evergreen shrub growing spontaneously throughout the Mediterranean area. Accessions show significant variations for agriculturally important traits, so the development of specific molecular markers for conservation and characterization of myrtle germplasm is desirable to conserve biodiversity. In this study, we isolated the first retrotransposon Ty1-copia-like element (Tmc1) in Myrtus communis L. genome and used this as a molecular marker. We successfully employed the S-SAP marker system to specifically characterize four myrtle accessions belonging to different areas in the province of Caserta (Italy). The high level of polymorphism detected in isolated LTRs, make Tmc1 a good molecular marker for this species. Our findings confirm that retrotransposon-based molecular markers are particularly valuable tools for plant molecular characterization studies.  相似文献   

8.
Summary We have used the polymerase chain reaction (PCR) to isolate a sequence characteristic of aTy1-copia group retrotransposon from the genome of the herring (Clupea harengus). This is the firstTy1-copia group retrotransposon sequence described in a vertebrate. Phylogenetic comparison of this sequence with other members of this group of retrotransposons shows that it resembles more closely some Tyl-copia group members fromDrosophila melanogaster than other group members in plants and fungi. These observations provide further evidence that theTy1-copia group LTR retrotransposons span many of the major eukaryote species boundaries, suggesting that horizontal transmission between different species has played a role in the evolution of this retrotransposon group.  相似文献   

9.
10.
Most eukaryotic centromeres contain large quantities of repetitive DNA, such as satellite repeats and retrotransposons. Unlike most transposons in plant genomes, the centromeric retrotransposon (CR) family is conserved over long evolutionary periods among a majority of the grass species. CR elements are highly concentrated in centromeres, and are likely to play a role in centromere function. In order to study centromere evolution in the Oryza (rice) genus, we sequenced the orthologous region to centromere 8 of Oryza sativa from a related species, Oryza brachyantha. We found that O. brachyantha does not have the canonical CRR (CR of rice) found in the centromeres of all other Oryza species. Instead, a new Ty3‐gypsy (Metaviridae) retroelement (FRetro3) was found to colonize the centromeres of this species. This retroelement is found in high copy numbers in the O. brachyantha genome, but not in other Oryza genomes, and based on the dating of long terminal repeats (LTRs) of FRetro3 it was amplified in the genome in the last few million years. Interestingly, there is a high level of removal of FRetro3 based on solo‐LTRs to full‐length elements, and this rapid turnover may have played a role in the replacement of the canonical CRR with the new element by active deletion. Comparison with previously described ChIP cloning data revealed that FRetro3 is found in CENH3‐associated chromatin sequences. Thus, within a single lineage of the Oryza genus, the canonical component of grass centromeres has been replaced with a new retrotransposon that has all the hallmarks of a centromeric retroelement.  相似文献   

11.
12.
Fast and efficient DNA fingerprinting of crop cultivars and individuals is frequently used in both theoretical population genetics and in practical breeding. Numerous DNA marker technologies exist and the ratio of speed, cost and accuracy are of importance. Therefore even in species where highly accurate and polymorphic marker systems are available, such as microsatellite SSR (simple sequence repeats), also alternative methods may be of interest. Thanks to their high abundance and ubiquity, temporary mobile retrotransposable elements come into recent focus. Their properties, such as genome wide distribution and well-defined origin of individual insertions by descent, predetermine them for use as molecular markers. In this study, several Ty3-gypsy type retrotransposons have been developed and adopted for the inter-retrotransposon amplified polymorphism (IRAP) method, which is suitable for fast and efficient pea cultivar fingerprinting. The method can easily distinguish even between genetically closely related pea cultivars and provide high polymorphic information content (PIC) in a single PCR analysis.  相似文献   

13.
14.
15.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

16.
This paper is the first report of field performance and evaluation of morphological traits following cryopreservation in four genotypes of Carica papaya (Z6, 97, TS2 and 35). It also describes the successful establishment of in vitro plantlets following vitrification-based cryopreservation of shoot tips and their acclimatisation through to field establishment. Cloned plants resulting from untreated controls, as well as controls taken at three other stages of the cryopreservation process (dissection, pre-treatment, plant vitrification solution 2 (PVS2) treatment) and cryopreserved plants were established to ensure a rigorous appraisal of any variation. Results indicate no differences between any of the control plants or cryopreserved plants for either growth performance or morphology. In addition, both randomly amplified DNA fingerprinting and amplified DNA methylation polymorphism markers were used to assess any genomic or methylation changes in genotype 97 at four different developmental stages post cryopreservation (in vitro, acclimatisation and field). Only small genomic DNA modifications (0–8.3%) were detected in field stage plants and methylation modifications (0–4.3%) were detected at both the in vitro and field stages for samples treated with PVS2 or cryopreservation.  相似文献   

17.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

18.
We characterised the extent of heterogeneity among PDR1 elements, a Ty1/copia-like retrotransposon family in pea, by restriction mapping and PCR with primers designed to amplify four functional domains. The data suggest that two main subfamilies of PDR1 differ in the size of their 5′-region. There are also sequence variants and rearranged copies which include a wide range of deletions of different sizes and deletions combined with insertions of host DNA, or inversions of various regions of the retrotransposon. A deletion hot-spot has been found at nucleotide position 394, where buffer sequences of 26 bp and 38 bp containing microsatellite motifs have been generated. There is more heterogeneity in the gag domain of PDR1 than in other functional domains, and the extent and pattern of this diversity was assessed among 56 Pisum accessions. We found a higher rate of rearrangement and sequence variation within the gag domain of PDR1 in P. fulvum and P. abyssinicum accessions than would be expected from the degree of insertion site polymorphism. A neighbour-joining phylogenetic tree constructed for gag sequences has a similar branching pattern to the equivalent insertion site tree, implying that the PDR1 family and its gag domain have coevolved with the pea genome. Combining both trees revealed clear and distinct subgroups among the Pisum ssp. Received: 17 March 1999 / Accepted: 20 July 1999  相似文献   

19.
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3′ untranslated region (UTR) separating the gag-pol region from the 3′ LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3′ UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3′ UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号