首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Background aimsNon-irradiated immunodeficient recipients provide the best physiologic setting for revealing hematopoietic stem cell (HSC) functions after xenotransplantion. An approach that efficiently permits the detection of human hematopoietic repopulating cells in non-irradiated recipients is therefore highly desired.MethodsWe compared side-by-side the ability to reconstitute hematopoiesis via intra-bone marrow transplantation (IBMT) in three commonly used mouse strains avoiding previous irradiation.ResultsNon-irradiated NOD/SCID and NOD/SCID (β2m?/? mouse strains prevent engraftment even after IBMT. In contrast, combining the robustness of the NOD/SCID IL-2Rγ?/? recipient with the sensitivity of IBMT facilitates the detection, without previous host irradiation, of human SCID-repopulating cells 10 weeks after transplantation. The level of chimerism averaged 14% and multilineage engraftment (lymphoid dominant) was observed consistently in all mice. Analysis of injected and non-injected bones, spleen and peripheral blood demonstrated that engrafting cells were capable of in vivo migration and expansion.ConclusionsCombining the robustness of the NOD/SCID IL-2Rγ?/? mouse strain with the sensitivity of IBMT strongly facilitates long-term multilineage engraftment and migration for human CD34+ cells without the need for previous irradiation.  相似文献   

2.
HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into NOD/SCID beta 2m-/- mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.  相似文献   

3.
Humanized mice were generated in order to investigate the anti-tumor efficacy of bispecific antibodies. The engraftment, distribution and differentiation of mononuclear cells (MNC) from cord blood transplanted into the liver of newborn non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice were measured. Using a human-specific polymerase chain reaction (PCR), human cells were found to be present in the liver for a time range from 5 min to 5 days. After long-term engraftment of 42 days, the highest level of human cells was measured in mouse thymus, with lower levels in spleen and bone marrow. Engrafted human cells in mouse organs showed T-cell differentiation only, as measured by CD3, CD4 and CD8 expression. The MNC transplanted intrahepatically into newborn mice were tested for T-cell mediated anti-tumor activity in vivo against subcutaneously transplanted human SW480 colon carcinoma in NOD/SCID mice. A delay of SW480 tumor growth in mice in the presence of a bispecific epithelial cell-adhesion molecule (EpCAM)/CD3 antibody was found to be associated with the presence of immunoreactive human CD3 cells within the SW480 tumor. Our data provide evidence that the intrahepatic transplantation of cord blood stem cells into newborn mice represents a valuable model for establishing functionally active human T cells with anti-tumor activity.  相似文献   

4.
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2(-/-)γc(-/-), NOD/SCID, NOD/SCIDγc(-/-) and NOD/SCIDβ2m(-/-) strains. Transplantation of these mice with CD34(+) human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1(-/-)γ(-/-) strain for engraftment by human fetal liver derived CD34(+) hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2(-/-)γc(-/-) mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1(-/-)γc(-/-) mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.  相似文献   

5.
We have developed NOD-Rag2null IL-2Rγnull (NR2G) mice similar to NOD-scidIL-2Rγnull (NOG) mice that are known as an excellent host to generate humanized mice. To evaluate the usefulness of NR2G mice as a host for humanized mice, the engraftment rates and differentiation of human cells after human hematopoietic stem cell (HSC) transplantation were compared among NR2G, NOG, and NOD-scid mice. For this purpose, the appropriate irradiation doses to expand the niche for human stem cells in the bone marrow were first determined. As a result, 8 and 2.5 Gy in adult, and 4 and 1 Gy in newborn NR2G and NOG mice, respectively, were found to be appropriate. Next, 5 × 104 human umbilical cord blood CD34+ cells were intravenously inoculated into irradiated adult or newborn of the immunodeficient mice. These HSC transplantation experiments demonstrated that both NR2G and NOG mice showed high engraftment rates compared with NOD-scid mice, although NOG mice showed a slightly higher engraftment rate than that for NR2G mice. However, no difference was found in the human cell populations differentiated from HSCs between NR2G and NOG mice. The HSC transplantation experiments to adults and newborns of two immunodeficient mice also revealed that the HSC transplantation into newborn mice resulted in higher engraftment rate than those into adults. These results showed that NR2G mice could be used as an alternative host to NOG mice to generate humanized mice.  相似文献   

6.
BACKGROUND: During the engraftment process of transplanted HPC, the beta 1 integrins play an important role. An increased expression and adhesive function of these integrins has been shown in hematopoietic cell lines and peripheral blood-derived HPC after stimulation with SCF. In this study, we investigated the influence of SCF on the engraftment capability and tissue distribution of cord blood (CB) cells transplanted into NOD/SCID mice. METHODS: CB-derived mononuclear cells were injected i.v. into 40 sublethally irradiated NOD/SCID mice with or without the addition of 10 microg SCF/ mouse. Six weeks later, BM, liver, kidneys, brain and testicular tissue were analyzed for the prevalence of human cells. RESULTS: The mean proportion of human CD45+ CD71+ cells within the BM of all engrafted mice receiving SCF in addition to the cells was 1.7-fold higher than in the respective controls. By immunohistochemical staining, human cells were found in liver and kidneys of the engrafted animals, but not in neural tissues or testicles. In the kidneys, the proportion of human cells rose significantly from 0.07 +/- 0.3% to 0.24 +/- 0.05% with treatment with SCF, compared with untreated controls. Single human cells in the liver additionally stained positive for human albumin, indicating organ-specific differentiation of the transplanted cells. DISCUSSION: Our results indicate that stimulation with SCF modulates the tissue distribution of the progeny of the transplanted cells and improves the hematopoietic engraftment potential of transplanted CB cells.  相似文献   

7.
Background aimsTransplantation of allogeneic hematopoietic stem cells (HSC) within the framework of hematologic oncology or inherited diseases may be associated with complications such as engraftment failure and long-term pancytopenia. HSC engraftment can be improved, for example by co-transplantation with mesenchymal stem cells (MSC). Recently, a new multipotent MSC line from umbilical cord blood, unrestricted somatic stem cells (USSC), has been described. It was demonstrated that USSC significantly support proliferation of HSC in an in vitro feeder layer assay.MethodsA NOD/SCID mouse model was used to assess the effect of USSC on co-transplanted CD34+ cells and look for the fate of transplanted USSC. The migration potential of USSC was studied in a Boyden chamber migration assay and in vivo. Quantitative real-time polymerase chain reaction (qRT-PCR) for CXCR4, CD44, LFA1, CD62L, VLA4, RAC2, VLA5A and RAC1 were performed. NMR1 nu/nu mice were used for a tumorigenicity test.ResultsAfter 4 weeks, homing of human cells (CD45+) to the bone marrow of NOD/SCID mice was significantly increased in mice co-transplanted with CD34+ cells and USSC (median 30.9%, range 7–50%) compared with the CD34+ cell-only control group (median 5.9%, range 3–10%; P = 0.004). Homing of USSC could not be shown in the bone marrow. A cell–cell contact was not required for the graft enhancing effect of USSC. An in vivo tumorigenicity assay showed no tumorigenic potential of USSC.ConclusionsThis pre-clinical study clearly shows that USSC have an enhancing effect on engraftment of human CD34+ cells. USSC are a safe graft adjunct.  相似文献   

8.
Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20–24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.  相似文献   

9.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

10.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

11.
12.
13.
Cord blood hematopoietic progenitor cells (CB-HPCs) transplanted immunodeficient NOD/LtsZ-scidIL2Rγ(null) (NSG) and NOD/SCID/IL2Rγ(null) (NOG) mice need efficient human cell engraftment for long-term HIV-1 replication studies. Total body irradiation (TBI) is a classical myeloablation regimen used to improve engraftment levels of human cells in these humanized mice. Some recent reports suggest the use of busulfan as a myeloablation regimen to transplant HPCs in neonatal and adult NSG mice. In the present study, we further ameliorated the busulfan myeloablation regimen with fresh CB-CD34+cell transplantation in 3-4 week old NSG mice. In this CB-CD34+transplanted NSG mice engraftment efficiency of human CD45+cell is over 90% in peripheral blood. Optimal engraftment promoted early and increased CD3+T cell levels, with better lymphoid tissue development and prolonged human cell chimerism over 300 days. These humanized NSG mice have shown long-lasting viremia after HIV-1JRCSF and HIV-1Bal inoculation through intravenous and rectal routes. We also saw a gradual decline of the CD4+T cell count, widespread immune activation, up-regulation of inflammation marker and microbial translocation after HIV-1 infection. Humanized NSG mice reconstituted according to our new protocol produced, moderate cellular and humoral immune responses to HIV-1 postinfection. We believe that NSG mice reconstituted according to our easy to use protocol will provide a better in vivo model for HIV-1 replication and anti-HIV-1 therapy trials.  相似文献   

14.
15.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

16.
Human hemopoietic stem cells (HSC) have been shown to engraft, differentiate, and proliferate in the hemopoietic tissues of sublethally irradiated NOD/LtSZ scid/scid (NOD/SCID) mice. We used this model to study homing, survival, and expansion of human HSC populations from different sources or phenotype. We observed that CD34+ cells homed specifically to bone marrow (BM) and spleen, but by 3 days after injection, survived only in the BM. These BM-homed CD34+ cells proliferated intensively and gave rise to a 12-fold, 5.5-fold, and 4-fold expansion in 3 days for umbilical cord blood, adult mobilized peripheral blood, and adult BM-derived cells, respectively. By injection of purified subpopulations, it was demonstrated that both CD34+38+ and CD34+38- umbilical cord blood HSC homed to the BM and expanded. Importantly, kinetics of expansion were different: CD34+38+ cells started to increase in cell number from day 3 onwards, and by 4 wk after injection, virtually all CD34+ cells had disappeared. In contrast, CD34+38- cells remained quiescent during the first week and started to expand intensively from the third week on. In this paper, we have shown that homing, survival, and expansion of stem cells are three independent phenomena important in the early phase of BM engraftment and that kinetics of engraftment differ between CD34+38+ and CD34+38- cells.  相似文献   

17.
We report on a subset of cells that co-purify with CD45-positive/Lineage minus (CD45(pos)/Lin(minus)) hematopoietic cells that are capable of in vitro differentiation into multi-potential cells including cells with neuroectoderm properties. Although these cells are CD45 positive and have properties similar to CD45-negative mesenchymal progenitor cells (MPC) derived from bone marrow (BM), they are neither hematopoietic cells nor mesenchymal cells. These CD45(pos)/Lin(minus) cells can be expanded in vitro, express the stem cell genes Oct-4 and Nanog and can be induced to differentiate into endothelial cells, osteoblasts, muscle cells and neural cells at frequencies similar to those reported for bone marrow mesenchymal cells. Long-term culture of these cells followed by transplantation into NOD/SCID mice resulted in positive bone marrow stromal cell engraftment but not hematopoietic engraftment, suggesting that despite their CD45-positive status these cells do not have the same properties as hematopoietic stem cells. Clonal cell analysis determined that the culture period caused a broadening in the differentiation potential of the starting population.  相似文献   

18.
Stem cell homing, engraftment and organ regeneration are controlled by cytokines, chemokines and cell-cell interactions. In this paper, cytokine effects on homing- and engraftment-related characteristics of CD34(+) cord blood cells were examined. Untreated CD34(+) cells were mainly in the G(0)/G(1) cell cycle phase, expressed adhesion receptors on a low level, were positive for vimentin, and negative for the epithelial marker cytokeratin 8/18. Treatment with stem cell factor (SCF) stimulated cell proliferation, increased the number of cells in S and G(2)/M cell cycle phase as well as the expression of adhesion receptors. The expression of cytokeratin 8/18 was increased and that of vimentin remained unchanged. Hepatocyte growth factor (HGF) did not stimulate cell proliferation and expression of adhesion receptors, but increased expression of cytokeratin 8/18. In NOD/SCID mice, kinetics of stem cell distribution revealed a fast elimination of human cells from blood. An increase in the number of engrafted cells was observed in different mouse organs in a time-dependent manner, preferentially in bone marrow, spleen and liver. Pretreatment with SCF resulted in reduction of long-term engraftment in bone marrow. HGF pretreatment of cord blood cells showed no significant effects on long-term engraftment capacity in mouse organs compared to untreated cells. Our data provide in vivo evidence that pretreatment of CD34(+) cells with SCF reduces long-term cell engraftment in NOD/SCID mice.  相似文献   

19.
In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.  相似文献   

20.
Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+) CD133(+) cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/-) (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+) CD133(+) fraction of expanded cells and that CD34(+) CD133(+) cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号