首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gibberellin A1 (GA1), 3-epi-GA1 GA17, GA19, GA20, and GA77 were identified by Kovats retention indices and full-scan mass spectra from gas chromatography-mass spectrometry analysis of a purified extract of mature seeds of photoblastic lettuce (Lactuca sativa L. cv. Grand Rapids). Non-13-hydroxylated GAs such as GA4 and GA9 were not detected even by highly sensitive radioimmunoassay. These results show that the major biosynthetic pathway of GAs in lettuce seeds is the early-13-hydroxylation pathway leading to GA1, which is suggested to be physiologically active in lettuce seed germination. Quantification of endogenous GAs in the lettuce seeds by gas chromatography-selected ion monitoring using deuterated GAs as internal standards indicated that the endogenous level of GA1 increased to a level about three times that of dark control 6 h after a brief red light irradiation, and that far-red light given after red light suppressed the effect of red light. The contents of GA20 and GA19 were not affected by the red light irradiation. Evidence is also presented that 3-epi-GA1 is a native GA in the lettuce seeds.  相似文献   

4.
Germination of lettuce ( Lactuce sativa L. cy. Grand Rapids) seeds was promoted by red light and by pulse treatments with gibbercllie acid (GA3) or hydrogen cyanide, whereas it was inhibited by short exposure of seeds to absusic acid (ABA). The eflects of unsalLirating red light and of 10 μ M GA3 on lettuce germination were completely reversed the effect of ABA (100 μ M ). In contrast, hydrogen cyanide did not reverse the effect of 100 μ M ABA and only partly eliminated the effect of 10μ M ABA, independently of the sequence of treatments. Possible interactions between HCN GA3, ABA and red light were discussed. It was concluded thai light GA3 and HCN affect different mechanisms involved in lettuce germination: ABA counteracts the stimulatory action of all these faclors. being the most effective against cvanide Additional key words - Lactuca sativa, pholodormancy, phylohormoncs.  相似文献   

5.
Triacontanol at concentrations from 2.3 × 10-9 M to 2.3 × 10-7 M did not affect the germination of lettuce ( Lactuca sativa L., cv. Grand Rapids) seeds in darkness, stimulated by light at 25°C or by benzyladenine at 31°C. Stimulation of seed germination by gibberellin A3 (10-5 M ) was significantly inhibited by triacontanol; the most effective concentration was 4.6 × 10-8 M. Pulse experiments demonstrated that triacontanol was ineffective when applied later than gibberellin, whereas an inverse sequence of treatment caused an inhibition comparable to that resulting from continuous treatment of seeds with both factors. Possible interaction of triacontanol with gibberellin receptor is discussed.  相似文献   

6.
Lettuce seeds cvs Hilde, Feltham King and Avoncrisp were subjected, at different phases during imbibition at 22°C, to a high temperature (33°C) inhibitory for germination, for periods ranging from 4 to 144 h, before returning them to 22°C. The results showed, that the first 4h of imbibition and also the phase between the commencement of mitosis and the onset of radicle emergence were more sensitive to the effects of high temperature than other phases in the germination process. Short exposures (8–24 h) to 33°C commencing at the latter phase delayed germination by up to 4 days, and at the earlier by up to 8 days. Percentage germination was unaffectd except after prolonged exposures (> 48 h) from the beginning of imbibition, which reduced it. Seedling emergence from moist sieved soil was both delayed and reduced when imbibing seeds were exposed for a short period from the beginning of imbibition to 33°C compared with seeds imbibing continuously at 19°C. Germination was delayed and not reduced when seed was exposed to 33°C at the phase between commencement of mitosis and the onset of radicle emergence.  相似文献   

7.
Summary The germination of lettuce seeds is inhibited by the nucleotide base analogue 6-methylpurine. RNA synthesis has been measured during imbibition and germination as 32P-phosphate incorporation into RNA species as fractionated by polyacrylamide gel electrophoresis. Seeds were surface sterilized and imbibed in the presence of various antibiotics. RNA preparations from lettuce seeds were coelectrophoresed with 3H-RNA prepared from bacteria to check for bacterial contamination of the seeds. There is a much higher rate of RNA synthesis in illuminated, germinating seeds as compared to dark, non-germinating seeds. This difference does not develop until after 12 hours of imbibition at 27°, which is the time of onset of germination and radicle growth.This investigation was supported by a contract from the United States Department of Agriculture (No. 616-15-3). Journal paper of the Purdue Agriculture Experiment Station.  相似文献   

8.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Inorganic nitrogen salts in the imbibition solutions reduced seed skotodormancy. Ten-day DS seeds, imbibed in 25 mm salt solutions followed by terminal R, germinated 99% if imbibed in NH4NO3, 70% if imbibed in KNO3 or NH4Cl, and 55% if imbibed in NaNO3. Seeds imbibed in higher salt concentrations germinated fully upon terminal R treatment. Seeds imbibed in 25 mm NH4Cl or in 50 mm NH4NO3 germinated completely upon GA3 treatment. Osmotic effects of imbibition media accounted for only part of the effect, since seeds imbibed in 50 mm CaCl2 or NaCl germinated poorly following R or GA3 treatment. Seeds imbibed in 500 mm polyethylene glycol (PEG) 1000 or mannitol solutions for 10 days still exhibited skotodormancy. Treatments of R or GA3 did not stimulate germination in seeds imbibed in mannitol, but germination was complete if seeds were given 1-h acid immersion plus a water rinse before the terminal R or GA3 treatment. Seeds imbibed in 50–500 mm PEG during 10-day DS germinated significantly better in response to terminal R. Terminal GA3 significantly improved germination only in seeds imbibed at 500 mm PEG. Pfr appeared to function in mannitol-imbibed seed only after an acid treatment. Seed exposure to inorganic nitrogen salts during the 10-day DS maintained seed sensitivity to terminal R or GA3 treatment. The depth of seed skotodormancy was related to the availability of inorganic nitrogen and also involved the levels of Pfr or endogenous GA3.Abbreviations FR far red - DS dark storage - R red - GA3 gibberellin A3 - PEG polyethylene glycol - SHAM salicylhydroxamic acid - ANOVA analysis of variance - GLM general linear model - LSD least squares difference - Pfr far-red absorbing form of phytochrome  相似文献   

9.
Fluence response curves for red light-induced germination of thermodormant (TD) seeds of Lactuca sativa L. show two regions that differ in their light sensitivity. In the region of high sensitivity, the germination responses differ between seed batches and can be altered by dark storage or far red irradiation. Induction of germination in far red dormant (FRD) seeds requires far higher fluences. Action spectra for induction to 60% germination were determined for these various response types. Spectra for the regions of low sensitivity response are similar for TD and FRD seeds. In comparison, the action spectrum for the highly sensitive response in TD seeds is significantly shifted to longer wavelengths. Analogous differences exist in the action spectra for far red reversal of the red induced germination responses. Germination induction in the low sensitivity region shows repeated red-far red reversibility. Far red reversal of red induction in the high sensitivity region does not saturate even at the highest far red fluences available and requires increased red fluences for subsequent reinduction. A model quantitatively accounting for these observations is presented. It is pointed out that action spectra of processes involving photoreversible pigments with partly overlapping absorption spectra in general are not identical with the absorption spectra of the partners. They should depend upon the degree of phototransformation required to elicit a given physiological response. In the case of induction of lettuce seed germination the observed action spectra can be interpreted as reflecting different requirements for P fr of the various response types. Our results do not necessitate the assumption of spectroscopically different forms of phytochrome in these seeds.Abbreviations TD thermodormant - FRD far red dormant - P phytochrome - P r red absorbing form of P - P fr far red absorbing form of P  相似文献   

10.
11.
Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivation of phytochrome. Experiments using 2,2-dimethylGA(4), a GA(4) analog resistant to gibberellin 2-oxidase, in combination with ga2ox2 mutant seeds suggest that the efficiency of deactivation of exogenous GA(4) by AtGA2ox2 is dependent on light conditions, which partly explains phytochrome-mediated changes in gibberellin effectiveness (sensitivity) found in previous studies.  相似文献   

12.
Seeds of the crisp lettuce cultivar Pennlake were germinated using all combinations of six ‘initial’ solutions of polyethylene glycol 6000 (PEG) with osmotic potentials ranging from 0 to -8 bars and seven ‘secondary’ solutions of PEG with osmotic potentials ranging from 0 to -10 bars, to which seeds were moved after 24 or 48 h in the ‘initial’ solution. The number of seeds germinating decreased at more negative osmotic potentials of both ‘initial’ and ‘secondary’ solutions but there was an interaction between germination temperature and the osmotic potential of the ‘initial’ solution. At an ‘initial’ solution osmotic potential of 0 bars germination at 20°C exceeded that at 10°C. As the osmotic potential of the ‘initial’ solution decreased germination at 20°C decreased more than at 10°C so that at the more negative osmotic potentials germination at 10°C exceeded that at 20°C. However seeds ungerminated after 14 days germinated normally when transferred back to water, so that the average final germination was 99.5%. The results suggest that major fluctuations in soil water potential in a seedbed are unlikely to influence seed germination per se provided that a period of 24 to 48 h at 0 bars tension is available at some time. The timing of such a period relative to sowing will have a considerable effect on the time of germination and hence the time of emergence. It is concluded that factors other than the direct effect of soil moisture content on germination are involved in reducing seedling emergence under fluctuating soil moisture conditions in the field.  相似文献   

13.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

14.
Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.  相似文献   

15.
Detailed analysis revealed fundamental differences between bacterial association with cucumber (Cucumis sativus) seeds and seedlings roots. Seed colonization by bacteria seems to result from passive encounter between bacteria, conveyed by imbibed soil solution, and the germinating seed. In accordance, the seed-associated bacterial community composition directly reflected that of the germination medium and was characterized by low dominance. Transition from seed to root was marked by a shift in bacterial community composition and in an increase in dominance values. Furthermore, settlement of bacteria on roots was tightly controlled by the specific properties of each root segment. Size and richness of the seed-associated bacterial community were clearly determinate by the community in the germination medium. In contrast, for fully developed and active roots, the medium effect on these parameters was negligible. Perturbation of the seed environment by a pathogen (Pythium aphanidermatum) had major consequences on the seed bacterial community. However, those were mostly related to direct pathogen-bacteria rather than seed-bacteria interactions. In conclusion, simple, even passive processes may determine the initial stage of plant-microbe association during seed germination, prior to extension of the primary root. Therefore, seed germination is a unique phase in the plant life cycle, with respect to its interaction with the below-ground microbiome.  相似文献   

16.
17.
Massanori Takaki  V. M. Zaia 《Planta》1984,160(2):190-192
A short period (15–30 min) at 30° C promotes germination of seeds of Lactuca sativa L. cv. Repolhuda in darkness. Far-red light reverses this stimulation, and the escape curves for phytochrome and high-temperature action are quite similar, indicating that the two factors act at a common point in the chain of events leading to germination. It is suggested that high temperature acts by decreasing the threshold of the active, far-red absorbing, form of phytochrome (Pfr) needed to promote germination.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

18.
Red light (R) and gibberellins (GA) each induce a water potential decrease in the axes of lettuce (Lactuca sativa L.) embryos resulting in germination of intact seeds (achenes) or an increase in growth of the axes of isolated embryos. The fruit coat and endosperm are a substantial barrier to the penetration of exogeneous GA. Isolated embryos take up 35 times as much [3H]GA1 as the embryos of intact seeds and respond to less than 1·10-10 M GA3 or GA4+7. We calculated that only 1·10-8 M of either GA3 or GA4+7 would result in 50% germination if the GA were able freely to penetrate the fruit coat. Exogenous GA3 or GA4+7, at concentrations insufficient to cause germination, result in an apparent synergistic promotion of germination when suboptimal R is applied. Yet suboptimal concentrations of exogenous GA3 or GA4+7 and suboptimal R result in only additive increases in the growth response in axes of isolated embryos. Dose-response curves demonstrate quantitative increases in the growth response of the isolated axes after R or GA treatments insufficient to induce germination in intact seeds, indicating that a threshold potential must be achieved by the embryonic axes before germination can occur.Abbreviations FR far=red light - GA gibberellin - PEG poly-ethylene glycol 4000 - Pfr far-red-absorbing phytochrome - R red light III.=Carpita et al. 1979b; IV.=Carpita et al. 1979c  相似文献   

19.
Germination of lettuce seeds has obvious thermoinhibition, but the mechanism for thermoinhibition of seed germination is poorly understood. Here, we investigated the interactions of nitrate, abscisic acid (ABA) and gibberellin on seed germination at high temperatures to understand further the mechanism for thermoinhibition of seed germination. Our results showed that lettuce (Lactuca sativa L. ‘Jianye Xianfeng No. 1’) seeds exhibited notable thermoinhibiton of germination at ≥17°C in darkness, and at ≥23°C in light, but the thermoinhibited seeds did not exhibit secondary dormancy. Thermoinhibition of seed germination at 23 or 25°C in light was notably decreased by 5 and 10 mM nitrate, and the stimulatory effects were markedly prevented by nitric oxide (NO) scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The sensitivity of seed germination to exogenous ABA increased with increasing temperature. Thermoinhibition of seed germination was markedly decreased by fluridone (an inhibitor of ABA biosynthesis) and GA3, and was increased by diniconazole (an inhibitor of the ABA-catabolizing enzyme ABA 8′-hydroxylase) and paclobutrazol (an inhibitor of GA biosynthetic pathway). The effect of fluridone in decreasing thermoinhibition of seed germination was obviously antagonized by paclobutrazol, and that of GA3 was notably added to by fluridone, and that of nitrate was antagonized by paclobutrazol, diniconazole and ABA and was added to by GA3 and fluridone. Our data show that thermoinhibition of lettuce seed germination is decreased by nitrate in a NO-dependent manner, which is antagonized by ABA, diniconazole and paclobutrazol and added by fluridone.  相似文献   

20.
Germination of lettuce seeds was inhibited by 6-methoxy-2-benzoxazolinone (MBOA) at concentrations greater than 0.03 mmol/L. MBOA also inhibited the induction of alpha-amylase activity in the lettuce seeds at concentrations greater than 0.03 mmol/L. These two concentration-response curves for the germination and alpha-amylase indicate that the percentage of the germination was positively correlated with the activity of alpha-amylase in the seeds. Lettuce seeds germinated around 18h after incubation and inhibition of alpha-amylase by MBOA occurred within 6h after seed incubation. These results show that MBOA may inhibit the germination of lettuce seeds by inhibiting the induction of alpha-amylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号