首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Hu YQ  Zhou JY  Fung WK 《Genetics》2007,175(3):1489-1504
The recombination rates in meioses of females and males are often different. Some genes that affect development and behavior in mammals are known to be imprinted, and >1% of all mammalian genes are believed to be imprinted. When the gene is imprinted and the recombination fractions are sex specific, the conventional transmission disequilibrium test (TDT) is shown to be still valid for testing for linkage. The power function of the TDT is derived, and the effect of the degree of imprinting on the power of the TDT is investigated. It is learned that imprinting has little effect on the power when the female and male recombination rates are equal. On the basis of case-parents trios, the transmissions from the heterozygous fathers/mothers to their affected children are separated as paternal and maternal, and two TDT-like statistics, TDT(p) and TDT(m), are consequently constructed. It is found that the TDT(p) possesses a higher power than the TDT for maternal imprinting genes, and the TDT(m) is more powerful than the TDT for paternal imprinting genes. On the basis of the parent-of-origin effects test statistic (POET), a novel statistic, TDT incorporating imprinting (TDTI) is proposed to test for linkage in the presence of linkage disequilibrium, which is shown to be more powerful than the TDT when parent-of-origin effects are significant but slightly less powerful than the TDT when parent-of-origin effects are negligible. The validity of the TDT and TDTI is assessed by simulation. The power approximation formulas for the TDT and TDTI are derived and the simulation results show that they are accurate. The simulation study on power comparison shows that the TDTI outperforms the TDT for imprinted genes. The improvement can be substantial in the case of complete paternal/maternal imprinting.  相似文献   

2.
When affected probands and their biological parents are genotyped at a candidate gene or a marker, the resulting case-parents-triad data enable powerful tests for linkage in the presence of association. When linkage disequilibrium has been detected in such a study, the investigator may wish to look further for possible parent-of-origin effects. If, for example, the transmission/disequilibrium test restricted to fathers is statistically significant, whereas that restricted to mothers is not, the investigator might interpret this as evidence for nonexpression of the maternally derived disease gene-that is, imprinting. This report reviews existing methods for detection of parent-of-origin effects, showing that each can be invalid under certain scenarios. Two new methods are proposed, based on application of likelihood-based inference after stratification on both the parental mating type and the inherited number of copies of the allele under study. If there are no maternal genetic effects expressed prenatally during gestation, the parental-asymmetry test is powerful and provides valid estimation of a parent-of-origin parameter. For diseases for which there could be maternal effects on risk, the parent-of-origin likelihood-ratio test provides a robust alternative. Simulations based on an admixed population demonstrate good operating characteristics for these procedures, under diverse scenarios.  相似文献   

3.
The sibship disequilibrium test (SDT) is designed to detect both linkage in the presence of association and association in the presence of linkage (linkage disequilibrium). The test does not require parental data but requires discordant sibships with at least one affected and one unaffected sibling. The SDT has many desirable properties: it uses all the siblings in the sibship; it remains valid if there are misclassifications of the affectation status; it does not detect spurious associations due to population stratification; asymptotically it has a chi2 distribution under the null hypothesis; and exact P values can be easily computed for a biallelic marker. We show how to extend the SDT to markers with multiple alleles and how to combine families with parents and data from discordant sibships. We discuss the power of the test by presenting sample-size calculations involving a complex disease model, and we present formulas for the asymptotic relative efficiency (which is approximately the ratio of sample sizes) between SDT and the transmission/disequilibrium test (TDT) for special family structures. For sib pairs, we compare the SDT to a test proposed both by Curtis and, independently, by Spielman and Ewens. We show that, for discordant sib pairs, the SDT has good power for testing linkage disequilibrium relative both to Curtis''s tests and to the TDT using trios comprising an affected sib and its parents. With additional sibs, we show that the SDT can be more powerful than the TDT for testing linkage disequilibrium, especially for disease prevalence >.3.  相似文献   

4.
In earlier work, my colleagues and I described a log-linear model for genetic data from triads composed of affected probands and their parents. This model allows detection of and discrimination between effects of an inherited haplotype versus effects of the maternal haplotype, which presumably would be mediated by prenatal factors. Like the transmission disequilibrium test (TDT), the likelihood-ratio test (LRT) based on this model is not sensitive to associations that are due to genetic admixture. When used as a method for testing for linkage disequilibrium, the LRT can be regarded as an alternative to the TDT. When one or both parents are missing, the resulting incomplete triad must be discarded to ensure validity of the TDT, thereby sacrificing information. By contrast, when the problem is set in a likelihood framework, the expectation-maximization algorithm allows the incomplete triads to contribute their information to the LRT without invalidation of the analysis. Simulations demonstrate that much of the lost statistical power can be recaptured by means of this missing-data technique. In fact, power is reasonably good even when no triad is complete-for example, when a study is designed to include only mothers of cases. Information from siblings also can be incorporated to further improve the statistical power when genetic data from parents or probands are missing.  相似文献   

5.
Luo ZW  Tao SH  Zeng ZB 《Genetics》2000,156(1):457-467
Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.  相似文献   

6.
Family-based association methods have been developed primarily for autosomal markers. The X-linked sibling transmission/disequilibrium test (XS-TDT) and the reconstruction-combined TDT for X-chromosome markers (XRC-TDT) are the first association-based methods for testing markers on the X chromosome in family data sets. These are valid tests of association in family triads or discordant sib pairs but are not theoretically valid in multiplex families when linkage is present. Recently, XPDT and XMCPDT, modified versions of the pedigree disequilibrium test (PDT), were proposed. Like the PDT, XPDT compares genotype transmissions from parents to affected offspring or genotypes of discordant siblings; however, the XPDT can have low power if there are many missing parental genotypes. XMCPDT uses a Monte Carlo sampling approach to infer missing parental genotypes on the basis of true or estimated population allele frequencies. Although the XMCPDT was shown to be more powerful than the XPDT, variability in the statistic due to the use of an estimate of allele frequency is not properly accounted for. Here, we present a novel family-based test of association, X-APL, a modification of the test for association in the presence of linkage (APL) test. Like the APL, X-APL can use singleton or multiplex families and properly infers missing parental genotypes in linkage regions by considering identity-by-descent parameters for affected siblings. Sampling variability of parameter estimates is accounted for through a bootstrap procedure. X-APL can test individual marker loci or X-chromosome haplotypes. To allow for different penetrances in males and females, separate sex-specific tests are provided. Using simulated data, we demonstrated validity and showed that the X-APL is more powerful than alternative tests. To show its utility and to discuss interpretation in real-data analysis, we also applied the X-APL to candidate-gene data in a sample of families with Parkinson disease.  相似文献   

7.
The transmission/disequilibrium (TD) test (TDT), proposed, by Spielman et al., for binary traits is a powerful method for detection of linkage between a marker locus and a disease locus, in the presence of allelic association. As a test for linkage disequilibrium, the TDT makes the assumption that any allelic association present is due to linkage. Allison proposed a series of TD-type tests for quantitative traits and calculated their power, assuming that the marker locus is the disease locus. All these tests assume that the observations are independent, and therefore they are applicable, as a test for linkage, only for nuclear-family data. In this report, we propose a regression-based TD-type test for linkage between a marker locus and a quantitative trait locus, using information on the parent-to-offspring transmission status of the associated allele at the marker locus. This method does not require independence of observations, thus allowing for analysis of pedigree data as well, and allows adjustment for covariates. We investigate the statistical power and validity of the test by simulating markers at various recombination fractions from the disease locus.  相似文献   

8.
OBJECTIVE: To present an alternative linkage test to the transmission/disequilibrium test (TDT) which is conservative under the null hypothesis and generally more powerful under alternatives. METHODS: The exact distribution of the TDT is examined under both the null hypothesis and relevant alternatives. The TDT is rewritten in an alternate form based on the contributions from each of the three relevant parental mating types. This makes it possible to show that a particular term in the estimate is an exact tie and thus to rewrite the estimate without this term and to replace the multinomial 'variance estimate' of Spielman et al. [Am J Hum Genet 1993;52:506-516] by the binomial variance. RESULTS: The resulting test is shown to be a stratified McNemar test (SMN). The significance level attained by the SMN is shown to be conservative when compared to the asymptotic chi(2) distribution, while the TDT often exceeds the nominal level alpha. Under alternatives, the proposed test is shown to be typically more powerful than the TDT. CONCLUSION: The properties of the TDT as a statistical test have never been fully investigated. The proposed test replaces the heuristically motivated TDT by a formally derived test, which is also computationally simple.  相似文献   

9.
Ghosh S  Reich T 《Human heredity》2002,53(4):181-186
The traditional transmission disequilibrium test (TDT) (Spielman et al., 1993) is a powerful test for association only in the presence of linkage. Since allele transmissions from homozygous parents do not carry any information on linkage, the TDT statistic uses data only on heterozygous parents. However, homozygous parents carry information on association between alleles at a marker locus and a disease locus. In this article, we explore whether inclusion of homozygous parents increases the power to detect association. The resultant test statistic follows a chi(2) distribution with 2 degrees of freedom. Monte-Carlo simulations are included to compare the performance of this test with the traditional TDT under different disease models.  相似文献   

10.
一种有效的复杂疾病基因定位的检测法   总被引:1,自引:0,他引:1  
连锁不平衡(LD)应用于某些复杂疾病基因的定位,近年来发展了许多LD定位方法,除TDT外,大多数LD定位方法须先假定无人群混和,人群混合可增大在疾病基因定位时犯Ⅰ类错误的机率,产生无效结果。此方法利用LD来检测标记位点和疾病敏感位点(DSL)的连锁(有连锁不平衡)相关(有连锁)。分析时采用不相关样本,已知其父母基因型和至少父母之一为杂合子,再将随机样本依基因型不同分类,然后对来自不同类的数据应用有力的统计方法进行单独和联合分析。此LD定位法不仅适用于患病和正常个体,而且有效消除据父母基因分类的样本定位时人群混合的影响,分析结果和模拟结果也表明此方法解决了在检测标记位点和疾病敏感位点之间的连锁和相关时人群混和的问题,但与TDT比,此法在检测的位点为DSL时丙能有效和充分地利用矫正数据,检测位点不是DSL时,此法和TDT法可相互补充更有效地检测连锁的DSL。  相似文献   

11.
Tests for linkage and association in nuclear families.   总被引:12,自引:4,他引:8       下载免费PDF全文
The transmission/disequilibrium test (TDT) originally was introduced to test for linkage between a genetic marker and a disease-susceptibility locus, in the presence of association. Recently, the TDT has been used to test for association in the presence of linkage. The motivation for this is that linkage analysis typically identifies large candidate regions, and further refinement is necessary before a search for the disease gene is begun, on the molecular level. Evidence of association and linkage may indicate which markers in the region are closest to a disease locus. As a test of linkage, transmissions from heterozygous parents to all of their affected children can be included in the TDT; however, the TDT is a valid chi2 test of association only if transmissions to unrelated affected children are used in the analysis. If the sample contains independent nuclear families with multiple affected children, then one procedure that has been used to test for association is to select randomly a single affected child from each sibship and to apply the TDT to those data. As an alternative, we propose two statistics that use data from all of the affected children. The statistics give valid chi2 tests of the null hypothesis of no association or no linkage and generally are more powerful than the TDT with a single, randomly chosen, affected child from each family.  相似文献   

12.
Linkage analysis with genetic markers has been successful in the localization of genes for many monogenic human diseases. In studies of complex diseases, however, tests that rely on linkage disequilibrium (the simultaneous presence of linkage and association) are often more powerful than those that rely on linkage alone. This advantage is illustrated by the transmission/disequilibrium test (TDT). The TDT requires data (marker genotypes) for affected individuals and their parents; for some diseases, however, data from parents may be difficult or impossible to obtain. In this article, we describe a method, called the "sib TDT" (or "S-TDT"), that overcomes this problem by use of marker data from unaffected sibs instead of from parents, thus allowing application of the principle of the TDT to sibships without parental data. In a single collection of families, there might be some that can be analyzed only by the TDT and others that are suitable for analysis by the S-TDT. We show how all the data may be used jointly in one overall TDT-type procedure that tests for linkage in the presence of association. These extensions of the TDT will be valuable for the study of diseases of late onset, such as non-insulin-dependent diabetes, cardiovascular diseases, and other diseases associated with aging.  相似文献   

13.
Transmission-disequilibrium tests for quantitative traits.   总被引:9,自引:3,他引:6       下载免费PDF全文
The transmission-disequilibrium test (TDT) of Spielman et al. is a family-based linkage-disequilibrium test that offers a powerful way to test for linkage between alleles and phenotypes that is either causal (i.e., the marker locus is the disease/trait allele) or due to linkage disequilibrium. The TDT is equivalent to a randomized experiment and, therefore, is resistant to confounding. When the marker is extremely close to the disease locus or is the disease locus itself, tests such as the TDT can be far more powerful than conventional linkage tests. To date, the TDT and most other family-based association tests have been applied only to dichotomous traits. This paper develops five TDT-type tests for use with quantitative traits. These tests accommodate either unselected sampling or sampling based on selection of phenotypically extreme offspring. Power calculations are provided and show that, when a candidate gene is available (1) these TDT-type tests are at least an order of magnitude more efficient than two common sib-pair tests of linkage; (2) extreme sampling results in substantial increases in power; and (3) if the most extreme 20% of the phenotypic distribution is selectively sampled, across a wide variety of plausible genetic models, quantitative-trait loci explaining as little as 5% of the phenotypic variation can be detected at the .0001 alpha level with <300 observations.  相似文献   

14.
The transmission/disequilibrium test (TDT) is a popular, simple, and powerful test of linkage, which can be used to analyze data consisting of transmissions to the affected members of families with any kind pedigree structure, including affected sib pairs (ASPs). Although it is based on the preferential transmission of a particular marker allele across families, it is not a valid test of association for ASPs. Martin et al. devised a similar statistic for ASPs, Tsp, which is also based on preferential transmission of a marker allele but which is a valid test of both linkage and association for ASPs. It is, however, less powerful than the TDT as a test of linkage for ASPs. What I show is that the differences between the TDT and Tsp are due to the fact that, although both statistics are based on preferential transmission of a marker allele, the TDT also exploits excess sharing in identity-by-descent transmissions to ASPs. Furthermore, I show that both of these statistics are members of a family of "TDT-like" statistics for ASPs. The statistics in this family are based on preferential transmission but also, to varying extents, exploit excess sharing. From this family of statistics, we see that, although the TDT exploits excess sharing to some extent, it is possible to do so to a greater extent-and thus produce a more powerful test of linkage, for ASPs, than is provided by the TDT. Power simulations conducted under a number of disease models are used to verify that the most powerful member of this family of TDT-like statistics is more powerful than the TDT for ASPs.  相似文献   

15.
We propose a new method for family-based tests of association and linkage called transmission/disequilibrium tests incorporating unaffected offspring (TDTU). This new approach, constructed based on transmission/disequilibrium tests for quantitative traits (QTDT), provides a natural extension of the transmission/disequilibrium test (TDT) to utilize transmission information from heterozygous parents to their unaffected offspring as well as the affected offspring from ascertained nuclear families. TDTU can be used in various study designs and can accommodate all types of independent nuclear families with at least one affected offspring. When the study sample contains only case-parent trios, the TDTU is equivalent to TDT. Informative-transmission disequilibrium test (i-TDT) and generalized disequilibrium test(GDT) are another two methods that can use information of both unaffected offspring and affected offspring. In contract to i-TDT and GDT, the test statistic of TDTU is simpler and more explicit, and can be implemented more easily. Through computer simulations, we demonstrate that power of the TDTU is slightly higher compared to i-TDT and GDT. All the three methods are more powerful than method that uses affected offspring only, suggesting that unaffected siblings also provide information about linkage and association.  相似文献   

16.
郭伟  冯荣锦 《遗传学报》2006,33(1):12-18
在渐近混合模型中,混合现象发生在每一世代,通过对其混合连锁不平衡的理论分析,发现混合连锁不平衡与两个子群体间的基因频率差成正比。基于这一点,构造了一个对重组率严格单调的函数(△ker=△/(p1-p2),其中△代表连锁不平衡),进而据此推断标记基因座与疾病基因座的遗传连锁。应用人类基因组上不连锁的标记基因提供的连锁不平衡信息,基于病人组数据构造了一个准似然比统计量。模拟结果显示,此检验可用于精确的基因定位。文章亦讨论了参数对检验的影响。  相似文献   

17.
Deng HW  Chen WM  Recker RR 《Human genetics》2002,110(5):451-461
The transmission disequilibrium test (TDT) has been employed to map disease susceptibility loci (DSL), while being immune to the problem of population admixture. The customary TDT test (TDT(D)) was developed for affected child(ren) and their parents and was most often applied to case-parent trios. Recently, the TDT has been extended to the situations when (1) parents are not available but affected and nonaffected sibs from each family are available, (2) unrelated control-parent trios are available for combined analyses with case-parent trios (TDT(DC)), and (3) large pedigrees. For many diseases, affected children in the case-parent trios enlisted into the TDT(D) have unaffected sibs who can be recruited. We present an extension of the TDT by effectively incorporating one unaffected sib of each of the affected children in the case-parent trios into a single analysis (TDT(DS), where DS denotes discordant sib pairs). We have developed a general analytical method for computing the statistical power of the TDT(DS) under any genetic model, the accuracy of which is validated by computer simulations. We compare the power of the TDT(D), TDT(DC), and TDT(DS) under a range of parameter space and genetic models. We find that the TDT(DS) is generally more powerful than the TDT(DC) and TDT(D), particularly when the disease is prevalent (>30%) in the population. The relative power of the TDT(D) and the TDT(DS) largely depends upon the allele frequencies and genetic effects at the DSL, whereas the recombination rate, the degree of linkage disequilibrium, and the marker allele frequencies have little effect. Importantly, the TDT(DS) not only may be more powerful, it also has the advantage of being able to test for segregation distortion that may yield false linkage/association in the TDT(D).  相似文献   

18.
It has been demonstrated in the literature that the transmission/disequilibrium test (TDT) has higher power than the affected-sib-pair (ASP) mean test when linkage disequilibrium (LD) is strong but that the mean test has higher power when LD is weak. Thus, for ASP data, it seems clear that the TDT should be used when LD is strong but that the mean test or other linkage tests should be used when LD is weak or absent. However, in practice, it may be difficult to follow such a guideline, because the extent of LD is often unknown. Even with a highly dense genetic-marker map, in which some markers should be located near the disease-predisposing mutation, strong LD is not inevitable. Besides the genetic distance, LD is also affected by many factors, such as the allelic heterogeneity at the disease locus, the initial LD, the allelic frequencies at both disease locus and marker locus, and the age of the mutation. Therefore, it is of interest to develop methods that are adaptive to the extent of LD. In this report, we propose a disequilibrium maximum-binomial-likelihood (DMLB) test that incorporates LD in the maximum-binomial-likelihood (MLB) test. Examination of the corresponding score statistics shows that this method adaptively combines two sources of information: (a) the identity-by-descent (IBD) sharing score, which is informative for linkage regardless of the existence of LD, and (b) the contrast between allele-specific IBD sharing score, which is informative for linkage only in the presence of LD. For ASP data, the proposed test has higher power than either the TDT or the mean test when the extent of LD ranges from moderate to strong. Only when LD is very weak or absent is the DMLB slightly less powerful than the mean test; in such cases, the TDT has essentially no power to detect linkage. Therefore, the DMLB test is an interesting approach to linkage detection when the extent of LD is unknown.  相似文献   

19.
The transmission/disequilibrium test (TDT), which detects linkage between a marker and disease loci in the presence of linkage disequilibrium, was introduced by Spielman et al. The original TDT requires families in which the genotypes are known for both parents and for at least one affected offspring, and this limits its applicability to diseases with late onset. The sib-TDT, or S-TDT, which utilizes families with affected and unaffected siblings, was introduced as an alternative method, by Spielman and Ewens, and the TDT and S-TDT can be combined in an overall test (i.e., a combined-TDT, or C-TDT). The TDT statistics described so far are for autosomal chromosomes. We have extended these TDT methods to test for linkage between X-linked markers and diseases that affect either males only or both sexes. For diseases of late onset, when parental genotypes are often unavailable, the X-linkage C-TDT may allow for more power than is provided by the X-linkage TDT alone.  相似文献   

20.
Most noninfectious disease is caused by low-penetrance alleles interacting with other genes and environmental factors. Consider the simple setting where a diallelic autosomal candidate gene and a binary exposure together affect disease susceptibility. Suppose that one has genotyped affected probands and their parents and has determined each proband's exposure status. One proposed method for assessment of etiologic interaction of genotype and exposure, an extension of the transmission/disequilibrium test, tests for differences in transmission of the variant allele from heterozygous parents to exposed versus unexposed probands. We show that this test is not generally valid. An alternative approach compares the conditional genotype distribution of unexposed cases, given parental genotypes, versus that of exposed cases. This approach provides maximum-likelihood estimators for genetic relative-risk parameters and genotype-exposure-interaction parameters, as well as a likelihood-ratio test (LRT) of the no-interaction null hypothesis. We show how to apply this approach, using log-linear models. When a genotype-exposure association arises solely through incomplete mixing of subpopulations that differ in both exposure prevalence and allele frequency, the LRT remains valid. The LRT becomes invalid, however, if offspring genotypes do not follow Mendelian proportions in each parental mating type-for example, because of genotypic differences in survival-or if a genotype-exposure association reflects an influence of genotype on propensity for exposure-for example, through behavioral mechanisms. Because the needed assumptions likely hold in many situations, the likelihood-based approach should be broadly applicable for diseases in which probands commonly have living parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号