首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.  相似文献   

2.
Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice   总被引:2,自引:0,他引:2  
Members of the Foxo family, Foxo1 (Fkhr), Foxo3 (Fkhrl1), and Foxo4 (Afx), are mammalian homologs of daf-16, which influences life span and energy metabolism in Caenorhabditis elegans. Mammalian FOXO proteins also play important roles in cell cycle arrest, apoptosis, stress resistance, and energy metabolism. In this study, we generated Foxo1-deficient mice to investigate the physiological role of FOXO1. The Foxo1-deficient mice died around embryonic day 11 because of defects in the branchial arches and remarkably impaired vascular development of embryos and yolk sacs. In vitro differentiation of embryonic stem cells demonstrated that endothelial cells derived from wild-type and Foxo1-deficient embryonic stem cells were able to produce comparable numbers of colonies supported by a layer of OP9 stromal cells. Although the morphology of the endothelial cell colonies was identical in both genotypes in the absence of exogenous vascular endothelial growth factor (VEGF), Foxo1-deficient endothelial cells showed a markedly different morphological response compared with wild-type endothelial cells in the presence of exogenous VEGF. These results suggest that Foxo1 is essential to the ability of endothelial cells to respond properly to a high dose of VEGF, thereby playing a critical role in normal vascular development.  相似文献   

3.
The mucin Muc2 or Mycin2 (Muc2), which is the main structural component of the protective mucus layer, has shown to be upregulated during chemotherapy-induced mucositis. As Muc2 has shown to have protective capacities, upregulation of Muc2 may be a counter reaction of the intestine protecting against mucositis. Therefore, increasing Muc2 protein levels could be a therapeutic target in mucositis prevention or reduction. Our aim was to determine the role of Muc2 in chemotherapy-induced mucositis. Mucositis was induced in Muc2 knockout (Muc2(-/-)) and wild type (Muc2(+/+)) mice by injecting methotrexate (MTX). Animals were weighed and sacrificed on Days 2-6 after MTX treatment and jejunal segments were analyzed. Before MTX treatment, the small intestine of Muc2(+/+) and Muc2(-/-) mice were similar with respect to epithelial morphology and proliferation. Moreover, sucrase-isomaltase and trefoil factor-3 protein expression levels were comparable between Muc2(+/+) and Muc2(-/-) mice. Up to Day 3 after MTX treatment, percentages of weight-loss did not differ. Thereafter, Muc2(+/+) mice showed a trend towards regaining weight, whereas Muc2(-/-) mice continued to lose weight. Surprisingly, MTX-induced intestinal damage of Muc2(-/-) and Muc2(+/+) mice was comparable. Prior to MTX-injection, tumor necrosis factor-alpha and interleukin-10 mRNAs were upregulated in Muc2(-/-) mice, probably due to continuous exposure of the intestine to luminal antigens. Muc2 deficiency does not lead to an increase in chemotherapy-induced mucositis. A possible explanation is the mechanism by which Muc2 deficiency may trigger the immune system to release interleukin-10, an anti-inflammatory cytokine before MTX-treatment.  相似文献   

4.
5.
Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. They are involved in a variety of cellular functions, such as cell adhesion or signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. Previously, we have shown that inactivation of the GNE by gene targeting causes early embryonic lethality in mice, whereas heterozygous GNE-deficient mice are vital. In this study we compared the amount of membrane-bound sialic acids of wildtype mice with those of heterozygous GNE-deficient mice. For that we quantified membrane-bound sialic acid concentration in various organs of wildtype- and heterozygous GNE-deficient mice. We found an organ-specific reduction of membrane-bound sialic acids in heterozygous GNE-deficient mice. The overall reduction was 25%. Additionally, we analyzed transferrin and polysialylated neural cell adhesion molecule (NCAM) by one- or two-dimensional gel electrophoresis. Transferrin-expression was unchanged in heterozygous GNE-deficient mice; however the isoelectric point of transferrin was shifted towards basic pH, indicating a reduced sialylation. Furthermore, the expression of polysialic acids on NCAM was reduced in GNE-deficient mice. Daniel Gagiannis and André Orthmann have contributed equally to this work.  相似文献   

6.
7.
8.
9.
Phosphatidylserine (PS) is synthesized in mammalian cells by two distinct serine-exchange enzymes, phosphatidylserine synthase-1 and -2. We recently demonstrated that mice lacking PS synthase-2 develop normally and exhibit no overt abnormalities [Bergo et al., (2002) J. Biol. Chem. 277:47701-47708]. We now show that PS synthase-2 mRNA levels are up to 80-fold higher in livers of embryos than in adults. Despite reduced serine-exchange activity in several tissues of PS synthase-2 deficient mice, the phospholipid composition of mitochondria and microsomes from these tissues is normal. Although PS synthase-2 is highly expressed in neurons, axon extension of cultured sympathetic neurons is not impaired by PS synthase-2 deficiency. We hypothesized that mice compensate for PS synthase-2 deficiency by modifying their phospholipid metabolism. Our data show that the rate of PS synthesis in hepatocytes is not reduced by PS synthase-2 deficiency but PS synthase-1 activity is increased. Moreover, PS degradation is decreased by PS synthase-2 deficiency, probably as a result of decreased PS degradation via phospholipases rather than decreased PS decarboxylation. These experiments underscore the idea that cellular phospholipid composition is tightly controlled and show that PS synthase-2-deficient hepatocytes modify phospholipid metabolism by several compensatory mechanisms to maintain phospholipid homeostasis.  相似文献   

10.
Acute fulminant liver failure is a serious worldwide health problem. Despite maximal supportive intensive care treatment, the disease offers a poor prognosis, with mortality rates of >80%. We have previously shown that a broad-spectrum inhibitor of matrix metalloproteinases (MMPs) confers complete protection in a mouse model of TNF-induced lethal hepatitis, thereby suggesting the possibility of protecting cancer patients against the deleterious side effects of TNF therapy. In our search for the individual matrix metalloproteinases involved, we found that the recently generated MMP-8-deficient mice are significantly protected against TNF-induced acute hepatitis. In contrast to their wild-type counterparts, MMP-8-null mice display very little hepatocyte necrosis and apoptosis, resulting in a much better survival outcome. We found that these animals clearly display impaired leukocyte influx into the liver and no release of the neutrophil-specific, LPS-induced CXC chemokine. Our findings provide evidence that MMP-8 plays an essential role in acute liver failure and might be a promising new target for the treatment for this illness.  相似文献   

11.
The integrin alpha(E)beta(7) is thought to play an important role in the localization of mucosal, but not of cutaneous T lymphocytes. Thus, it was surprising that 89% of adult alpha(E)(-/-) mice on the 129/Sv x BALB/c background developed inflammatory skin lesions without an apparent infectious etiology. Skin inflammation correlated with alpha(E) deficiency in mice with a mixed 129/Sv x BALB/c background, but not in mice further backcrossed to BALB/c and housed in a second animal facility. These studies suggested that alpha(E) deficiency, in combination with other genetic and/or environmental factors, is involved in lesion development. The lesions were infiltrated by CD4(+) T cells and neutrophils, and associated with increased expression of inflammatory cytokines. Furthermore, skin inflammation resulted from transfer of unfractionated alpha(E)(-/-) splenocytes into scid/scid mice, but not from transfer of wild-type splenocytes, suggesting that the lesions resulted from immune dysregulation. We also studied the role of alpha(E)beta(7) in a murine model of hyperproliferative inflammatory skin disorders that is induced by transfer of minor histocompatibility-mismatched CD4(+)/CD45RB(high) T cells into scid/scid mice under specific environmental conditions. Under housing conditions that were permissive for lesion development, transfer of alpha(E)-deficient CD4(+)/CD45RB(high) T cells significantly exacerbated the cutaneous lesions as compared with lesions observed in mice reconstituted with wild-type donor cells. These experiments suggested that alpha(E)-expressing cells play an important role during the course of cutaneous inflammation. In addition, they suggest that alpha(E)beta(7) deficiency, in combination with other genetic or environmental factors, is a risk factor for inflammatory skin disease.  相似文献   

12.
C-reactive protein (CRP), a phylogenetically highly conserved plasma protein, is the classical acute phase reactant in humans. Upon infection, inflammation, or tissue damage, its plasma level can rise within hours >1000-fold, providing an early, nonspecific disease indicator of prime clinical importance. In recent years, another aspect of CRP expression has attracted much scientific and public attention. Apart from transient, acute phase-associated spikes in plasma concentration, highly sensitive measurements have revealed stable interindividual differences of baseline CRP values in healthy persons. Strikingly, even modest elevations in stable baseline CRP plasma levels have been found to correlate with a significantly increased risk of future cardiovascular disease. These observations have triggered intense controversies about potential atherosclerosis-promoting properties of CRP. To directly assess potential effects of CRP on atherogenesis, we have generated CRP-deficient mice via gene targeting and introduced the inactivated allele into atherosclerosis-susceptible ApoE(-/-) and LDLR(-/-) mice, two well established mouse models of atherogenesis. Morphometric analyses of atherosclerotic plaques in CRP-deficient animals revealed equivalent or increased atherosclerotic lesions compared with controls, an experimental result, which does not support a proatherogenic role of CRP. In fact, our data suggest that mouse CRP may even mediate atheroprotective effects, adding a cautionary note to the idea of targeting CRP as therapeutic intervention against progressive cardiovascular disease.  相似文献   

13.
Ca2+-independent phospholipase A2β (iPLA2β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA2β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M1,3,5 receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA2β−/−, iPLA2β+/−, and iPLA2β+/+ mice, and [1-14C]DHA was infused intravenously. DHA incorporation coefficients k* and rates Jin, representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA2β−/− or iPLA2β+/− compared with iPLA2β+/+ mice showed widespread and significant baseline reductions in k* and Jin for DHA. Arecoline increased both parameters in brain regions of iPLA2β+/+ mice but quantitatively less so in iPLA2β−/− and iPLA2β+/− mice. Consistent with iPLA2β’s reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA2β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M1,3,5 receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.  相似文献   

14.
The regulator of G protein signaling (RGS) 2, a GTPase-activating protein, is activated via the nitric oxide (NO)-cGMP pathway and thereby may influence blood pressure regulation. To test that notion, we measured mean arterial blood pressure (MAP) and heart rate (HR) with telemetry in N(omega)-nitro-l-arginine methyl ester (l-NAME, 5 mg l-NAME/10 ml tap water)-treated RGS2-deficient (RGS2(-/-)) and RGS2-sufficient (RGS2(+/+)) mice and assessed autonomic function. Without l-NAME, RGS2(-/-) mice showed during day and night a similar increase of MAP compared with controls. l-NAME treatment increased MAP in both strains. nNOS is involved in this l-NAME-dependent blood pressure increase, since 7-nitroindazole increased MAP by 8 and 9 mmHg (P < 0.05) in both strains. The l-NAME-induced MAP increase of 14-15 mmHg during night was similar in both strains. However, the l-NAME-induced MAP increase during the day was smaller in RGS2(-/-) than in RGS2(+/+) (11 +/- 1 vs. 17 +/- 2 mmHg; P < 0.05). Urinary norepinephrine and epinephrine excretion was higher in RGS2(-/-) than in RGS2(+/+) mice. The MAP decrease after prazosin was more pronounced in l-NAME-RGS2(-/-). HR variability parameters [root mean square of successive differences (RMSSD), low-frequency (LF) power, and high-frequency (HF) power] and baroreflex sensitivity were increased in RGS2(-/-). Atropine and atropine plus metoprolol markedly reduced RMSSD, LF, and HF. Our data suggest an interaction between RGS2 and the NO-cGMP pathway. The blunted l-NAME response in RGS2(-/-) during the day suggests impaired NO signaling. The MAP increases during the active phase in RGS2(-/-) mice may be related to central sympathetic activation and increased vascular adrenergic responsiveness.  相似文献   

15.
16.
To provide an animal model of central hypothyroidism, mice deficient in the TRH-receptor 1 (TRH-R1) gene were generated by homologous recombination. The pituitaries of TRH-R1-/- mice are devoid of any TRH-binding capacity, demonstrating that TRH-R1 is the only receptor localized on TRH target cells of the pituitary. With the exception of some retardation in growth rate, TRH-R1-/- mice appear normal, but compared with control animals they exhibit a considerable decrease in serum T(3), T(4), and prolactin (PRL) levels but not in serum TSH levels. In situ hybridization histochemistry and real-time RT-PCR analysis revealed that in adult TRH-R1-/- animals TSHbeta-mRNA expression is not impaired whereas PRL mRNA and GH mRNA levels are considerably reduced compared with control mice. The numbers of thyrotropes, somatotropes, and lactotropes, however, are not affected by the deletion of the TRH-R1 gene. The mutant mice are fertile, and the dams nourish their pups well, indicating that TRH is not a decisive factor for suckling-induced PRL release. In situ hybridization and quantitative RT-PCR analysis, furthermore, revealed that, as in control animals, pituitary PRL-mRNA expression in TRH-R1-/- is considerably increased during lactation, albeit strongly reduced as compared with lactating control animals.  相似文献   

17.
18.
19.
Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice   总被引:3,自引:0,他引:3  
Allergic inflammation is mediated by Th2 cell-derived cytokines, including IL-4, IL-5, and IL-13, and down-regulated by IFN-gamma and IL-12. Tyk2 is a member of the Janus family of protein tyrosine kinases and is activated by a variety of cytokines: IFN-alphabeta, IL-6, IL-10, IL-12, and IL-13. In this study, we investigated the role of Tyk2 in the regulation of Ag-induced Th cell differentiation and Ag-induced allergic inflammation in the airways using Tyk2-deficient (Tyk2(-/-)) mice. When splenocytes were stimulated with antigenic peptide, IL-12-mediated Th1 cell differentiation was decreased, but IL-4-mediated Th2 cell differentiation was increased in Tyk2(-/-) mice. In vivo, Ag-specific IgE and IgG1 production was increased, but Ag-specific IgG2a production was decreased in Tyk2(-/-) mice as compared with those in control mice. In addition, Ag-induced eosinophil and CD4(+) T cell recruitment, as well as the production of Th2 cytokines in the airways, was increased in Tyk2(-/-) mice. Adoptive transfer experiments revealed that CD4(+) T cells were responsible for the enhanced Ag-induced eosinophil recruitment in Tyk2(-/-) mice. In contrast, although the level of IL-13 was increased in the airways of Tyk2(-/-) mice after Ag inhalation, the number of goblet cells, as well as Muc5ac mRNA expression, was decreased in Tyk2(-/-) mice. Together, these results indicate that Tyk2 plays a bilateral role in the regulation of allergic inflammation in the airways: Tyk2 plays a role in the down-regulation of Th2 cell-mediated Ab production and eosinophil recruitment in the airways by regulating Th1/Th2 balance toward Th1-type, while Tyk2 is necessary for the induction of IL-13-mediated goblet cell hyperplasia in the airways.  相似文献   

20.
Immune responses in 4-1BB (CD137)-deficient mice   总被引:12,自引:0,他引:12  
The 4-1BB (a TNFR superfamily member) is an inducible costimulatory molecule that can exert regulatory effects on T cells independently of CD28 stimulation. The in vitro expression of 4-1BB (CD137) is induced following activation of T cells with various stimuli, including anti-TCR mAbs, lectins, and a combination of PMA and ionomycin. To delineate further the physiological role of 4-1BB in immunity, mice deficient in this receptor were generated. These mutant mice developed normally, and were viable and fertile. Humoral responses to vesicular stomatitis virus were comparable with those seen in wild-type mice, whereas the IgG2a and IgG3 isotype responses to keyhole limpet hemocyanin were somewhat reduced in the mutant mice. The 4-1BB-deficient mice demonstrated enhanced T cell proliferation in response to mitogens or anti-CD3 even in the environment of reduced ability to secrete growth-supporting cytokines (IL-2 and IL-4). Although T cells from 4-1BB-deficient mice showed enhanced proliferation, the T cell immune responses of these animals, such as cytokine production and CTL activity, were diminished. In addition, 4-1BB deletion appears to play a role in the regulation of myeloid progenitor cell growth, leading to an increase in these precursor cells in peripheral blood, bone marrow, and spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号