首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
The Z genetic variant of human alpha 1-antitrypsin (alpha 1AT) is associated with decreased serum alpha 1AT levels, hepatic inclusion bodies, and an increased risk of lung and liver disease. We studied the biosynthesis, processing, and secretion of normal and Z variant alpha 1AT in cell-free translation systems, reconstituted in vitro processing systems, and in the Xenopus oocyte secretory system. Human liver mRNA was prepared from normal subjects (PiMM) and from individuals homozygous for alpha 1AT deficiency (PiZZ). Cell-free translation resulted in the synthesis of 49,000-Da preproteins with a 23-amino acid signal sequence. The genetic variants were synthesized at comparable levels and could be distinguished on the basis of charge. The majority of the amino acids in the ZZ signal peptide were identified and found to be the same as those comprising the MM signal sequence. These proteins were co-translationally processed with similar efficiency by dog pancreas microsomes, producing 52,000-Da glycoproteins which were completely translocated across the endoplasmic reticulum membrane. When the human liver RNA preparations were injected into Xenopus oocytes, both of the alpha 1AT variants were synthesized intracellularly and alpha 1AT was detected in the medium of all oocytes injected with MM RNA. However, the Z variant accumulated within the microsomal vesicles of the cell and was undetectable or present at decreased levels in the medium. We conclude that the single amino acid substitution in the Z variant of alpha 1AT does not affect its synthesis or co-translational processing but that it strongly affects its transport from the rough endoplasmic reticulum through the secretory pathway.  相似文献   

2.
Sera from a patient with a chronic Epstein Barr virus (EBV) infection contained unusually high anti-EBV antibody titers (1:2560 to 1:10,240 for EA(D) and 1:5,120 to 1:40,960 for VCA). One of these serum samples was shown by immunoprecipitation to recognize at least 11 EBV-specific proteins from virus producer cells labeled in vivo and 10 EBV-specific proteins from in vitro translations of producer cell mRNA. Six of the in vivo labeled proteins (135,000, 89,000, 50,000 to 55,000 doublet, 46,000, and 34,000 daltons) are "early" by their resistance to phosphonoacetic acid, and five (350,000, 220,000, 160,000, 140,000, and 85,000 daltons) are "late" membrane and capsid proteins. The EBV-specific proteins immunoprecipitated from in vitro translations had molecular masses of 150,000, 140,000, 115,000, 52,000, 50,000, 45,000, 34,000, 29,000, 17,000, and 15,000. Subcellular fractionation studies of cells labeled in vivo revealed that the 135,000-dalton protein and part of the 50,000 to 55,000 dalton protein doublet were found in both the nuclear and the cytoplasmic fractions, and thus are good candidates to be components of the EA(D) diffuse-type immunofluorescence observed with many EA-positive sera.  相似文献   

3.
We used a system of co-culture of adult rat hepatocytes with another epithelial cell type from rat liver to study the synthesis of two acute-phase reactants, alpha-1 acid glycoprotein (alpha 1AGP) and the third component of complement (C3), and we have obtained long-term secretion of these two proteins. After a period of adaptation corresponding to the first 2-4 days of the co-culture, hepatocytes secreted C3 and alpha 1AGP for at least 2 weeks at a mean level higher than that observed in the first days of a pure culture of hepatocytes. When pulse-chase analysis was performed on day 6 of co-culture, kinetics of synthesis of alpha 1AGP and C3 were the same as those observed on day 1 of a conventional culture of pure hepatocytes. Furthermore, intracellular and extracellular alpha 1AGP had Mr values respectively of 39,000 and of 42,000-52,000, identical with those observed in pure cultures of hepatocytes. Similarly, the molecular size and subunit structures of C3 were the same in co-culture and in cultures, indicating an identical processing of this protein. C3 produced in co-culture was also haemolytically active. Therefore, the system of adult hepatocytes co-cultured with this liver epithelial cell provides a physiological system in vitro which permits long-term synthesis of the two acute-phase reactants C3 and alpha 1AGP. This model opens the possibility to study the modulation of the synthesis of these two proteins during a long period by inflammatory agents or by hormones.  相似文献   

4.
The major acute-phase protein (alpha 1-MAP) of rat serum is induced in response to inflammation. This induction may be attributed to a corresponding increase in the level of translatable mRNA for the protein. Using in vitro and in vivo systems, various biosynthetic processing intermediates of this glycoprotein have been isolated. alpha 1-MAP is translated in a rabbit reticulocyte system as a preprotein with an amino-terminal signal peptide and an apparent molecular weight of 51,000. Translation of rough microsomes yields a product with a mass of 57,000 Da, representing the core glycosylated form of alpha 1-MAP. Cotranslational glycosylation appears to occur in a stepwise fashion, since three glycosylated forms of alpha 1-MAP (51,000, 54,000, and 57,000 Da) were detected in polysome translations; these products were digested by endoglycosidase H to a 48,000-Da protein. Two intracellular forms of alpha 1-MAP were observed in vivo, a 57,000-Da (core carbohydrate sidechains) and a 66,000-Da protein (mature complex carbohydrate side-chains); the latter was the only component secreted into the culture medium. To extend our studies on this protein, a cDNA clone specific for alpha 1-MAP was isolated. The recombinant was positively identified by hybrid selection procedures and contains a 1.55-kb insert. Partial radiosequence analysis of the primary translation product indicated the distribution of Leu, Ile, Cys, and Met in the amino-terminal region of this protein. To relate the location of these amino acids with the nucleotide sequence, cDNA was analyzed by the method of Maxam and Gilbert. These results indicate that the cDNA insert contains the 3' poly(A) tail, and alignment of the 5' end of the cDNA with the available amino acid sequence of the primary translation product corroborated that the insert encodes the entire alpha 1-MAP protein except for the first four amino acids of the signal peptide.  相似文献   

5.
Isolated triads from rabbit skeletal muscle were shown to contain an intrinsic protein kinase which was neither Ca2+/calmodulin-dependent nor cAMP-dependent. The protein substrates phosphorylated by this protein kinase exhibited apparent molecular weights of 300,000, 170,000, 90,000, 80,000, 65,000, 56,000, 52,000, 51,000, 40,000, 25,000, 22,000, and 15,000. Purification of the 1,4-dihydropyridine receptor from phosphorylated triads has demonstrated that the 170,000- and 52,000-Da subunits of the 1,4-dihydropyridine receptor are phosphorylated by this intrinsic protein kinase in isolated triads. Monoclonal antibodies to the 170,000-Da subunit of the dihydropyridine receptor immunoprecipitated the 170,000-Da phosphoprotein from detergent extracts of phosphorylated triads. The mobility of the 170,000-Da phosphoprotein in sodium dodecyl sulfate-polyacrylamide gels was not changed with or without reduction, demonstrating that the 170,000-Da phosphoprotein is not the glycoprotein subunit of the receptor. Our results demonstrate that the 170,000- and 52,000-Da subunits of the dihydropyridine receptor are phosphorylated by an intrinsic protein kinase in isolated triads. In addition, our results also demonstrate that the 175,000-Da glycoprotein subunit of the dihydropyridine receptor is not phosphorylated in isolated triads by the intrinsic protein kinase, cAMP-dependent protein kinase, or endogenous Ca2+/calmodulin-dependent protein kinase.  相似文献   

6.
Rat kidney microsomal UDP-glucuronyltransferase activities toward phenoic xenobiotics were enhanced about 4-5-fold by treatment of the animal with beta-naphthoflavone. The transferase activity toward serotonin, an endogenous substrate, was also enhanced about 7.5-fold. A form of UDP-glucuronyltransferase was purified from kidney microsomes of beta-naphthoflavone-treated rat by solubilization with sodium cholate and two steps of column chromatography, the first with DEAE-Toyopearl (fast flow rate liquid chromatography:FFLC) and the second with UDP-hexanolamine Sepharose 4B (affinity chromatography). These procedures gave about 39-fold purification and 11.5% yield of the transferase activity toward 1-naphthol. The preparation, tentatively termed "GT-2," was highly purified as judged from the single protein band (Mr 54,000) on sodium dodecylsulfate (SDS)-polyacrylamide slab gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 1-naphthol, 4-nitrophenol, and 4-methylumbelliferone but also serotonin. From the result that apparent molecular weight of GT-2 was reduced to 50,000 by endo-beta-N-acetylglucosaminidase H (Endo H)-treatment, GT-2 was found to be a 50,000 Da polypeptide carrying "high mannose" type oligosaccharide chain(s). The NH2-terminal sequence of 20 residues of GT-2 was determined to be Asp-Lys-Leu-Leu-Val-Val-Pro-Gln-Asp-Gly-Ser-His-Trp-Leu-Ser-Met-Lys-Glu- Ile-Val . It was observed that there are two amino acids substitutions in the seven NH2-terminal residues in comparison with GT-1, which was purified from liver microsomes of 3-methylcholanthrene-treated rat. The NH2-terminal sequence of GT-2 was found to be homologous with the NH2-terminal sequence from the 26th to 46th amino acid residue of various UDP-glucuronyltransferase cloned by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Molecular cloning and primary structure of rat alpha 1-antitrypsin   总被引:1,自引:0,他引:1  
S Chao  K X Chai  L Chao  J Chao 《Biochemistry》1990,29(2):323-329
A cDNA clone encoding rat alpha 1-antitrypsin has been isolated from a lambda gt-11 rat liver cDNA library using an antigen-overlay immunoscreening method. The nucleotide sequence of this cDNA clone is 1306 base pairs in length and has a coding region of 1224 base pairs which can be translated into an alpha 1-antitrypsin precursor protein consisting of 408 amino acid residues. The cDNA sequence contains a termination codon, TAA, at position 1162 and a polyadenylation signal sequence, AATAAT, at position 1212. The calculated molecular weight of the translated mature protein is 43,700 with 387 amino acid residues; this differs from purified rat alpha 1-antitrypsin's apparent molecular weight of 54,000 because of glycosylation. Five potential glycosylation sites were identified on the basis of the cDNA sequence. The translated mature protein sequence from the cDNA clone matches completely with the N-terminal 33 amino acids of purified rat alpha 1-antitrypsin, which has an N-terminal Glu. The cDNA encoding rat alpha 1-antitrypsin shares 70% and 80% sequence identity with its human and mouse counterparts, respectively. The reactive center sequence of rat alpha 1-antitrypsin is highly conserved with respect to human alpha 1-antitrypsin, both having Met-Ser at the P1 and P1' residues. Genomic Southern blot analysis yielded a simple banding pattern, suggesting that the rat alpha 1-antitrypsin gene is single-copy. Northern blot analysis using the cDNA probe showed that rat alpha 1-antitrypsin is expressed at high levels in the liver and at low levels in the submandibular gland and the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Antibody to mouse UDP glucuronosyltransferase, previously shown to cross-react with rat transferase [1], immunoadsorbed 3 electrophoretically distinct transferase forms from the microsomes of untreated and phenobarbital-treated rats and 4 forms from 3-methylcholanthrene treated animals. The forms from phenobarbital-treated or control animals ranged in molecular weights from 49,000 to 52,000 daltons, and those from 3-methylcholanthrene-treated rats ranged from 51,000 to 57,000 daltons. The intensity of the electrophoretic bands indicated that the levels of at least two forms were increased by the administration of either compound.In contrast, only a 52,000-dalton electrophoretic band was observed after immunoadsorption of in vitro translated products using poly(A) RNA isolated from either control, phenobarbital-, or 3-methylcholanthrene-treated rats. When dog pancreatic microsomes were included in the in vitro translation assay for either of the poly(A) RNA preparations, part of the 52,000-dalton band remained and a new band of about 50,000 daltons was generated. This processed transferase form(s) appeared to be inserted into or sequestered by the microsomes. These results indicate that some of the electrophoretic variants of rat liver transferase arise by posttranslational modifications and that at least one rat transferase form undergoes proteolytic cleavage of an approximate 2,000-dalton peptide fragment during insertion into the membrane.  相似文献   

9.
A cDNA clone for alpha 1-protease inhibitor (pc alpha 1P1212) was isolated from a lambda ZAP rat liver cDNA library. The 1.4 kb cDNA insert of pc alpha 1P1212 contained an open reading frame that encodes a 411-residue polypeptide (46,125 Da), in which a signal peptide of 24 residues was identified by comparison with the NH2-terminal sequence of the purified protein. Three potential sites for N-linked glycosylation were found in the molecule, accounting for the difference in molecular mass between the predicted form and the purified protein (56 kDa). The deduced primary structure of rat alpha 1-protease inhibitor showed 68.5% homology to that of the human inhibitor. We then constructed the expression plasmid pSV2 alpha 1PI from pSV2-gpt and pc alpha 1P1212, and transfected it into COS-1 cells. The transfected cells synthesized a molecule which was precipitated with anti-(rat alpha 1-protease inhibitor)-IgG and had the same molecular size as that of the inhibitor produced by rat hepatocytes.  相似文献   

10.
Rabbit skeletal muscle glycogen previously has been shown to be covalently bound to a 40,000-Da protein ("glycogenin") via a novel glucosyl-tyrosine linkage [I.R. Rodriguez and W.J. Whelan (1985) Biochem. Biophys. Res. Commun. 132, 829-836]. Antibodies raised against rabbit skeletal muscle glycogenin cross-react with a similar protein present in rabbit heart and liver glycogens, as well as with a 42,000-Da "acceptor protein" present in high-speed supernatants of rabbit muscle, heart, retina, and liver. This 42,000-Da protein incorporates [U-14C]Glc when an ammonium sulfate fraction prepared from the tissue supernatants is incubated with UDP-[U-14C]Glc. The [U-14C]Glc incorporated can be removed quantitatively by treatment with amylolytic enzymes, indicating that the [U-14C]Glc incorporation represents elongation of a preexisting glucan attached to the acceptor protein. Furthermore, a commercial preparation of rabbit skeletal muscle glycogen synthase contains this 42,000-Da protein. We propose that the 42,000-Da protein represents the free form of glycogenin in tissues, with its covalently attached glucan chain(s) providing a "primed" elongation site for glycogen synthesis.  相似文献   

11.
A UDP-glucuronyltransferase isoform glucuronizes phenolic xenobiotics such as 4-nitrophenol, and an isoform glucuronizing 4-hydroxybiphenyl has also been found in rat liver. We purified a UDP-glucuronyltransferase isoform glucuronizing 4-hydroxybiphenyl from bovine liver microsomes by solubilization with 0.7% sodium cholate followed by three column chromatographic separations using DEAE-Toyopearl 650S, UDP-hexanolamine Sepharose 4B, and hydroxyapatite. The purified bovine liver 4-hydroxybiphenyl UDP-glucuronyltransferase (named Bovine 4HBGT) had glucuronidation activities toward 4-hydroxybiphenyl and 4-methylumbelliferone but had little activity toward 4-nitrophenol and 1-naphthol. The apparent molecular mass of Bovine 4HBGT was 54,000 Da on SDS-PAGE, and this was decreased to 50,000 Da by digestion with endo-beta-N-acetylglucosaminidase H. These data suggest that Bovine 4HBGT consists of a 50,000 Da polypeptide and a high mannose type oligosaccharide chain(s) of about 4,000 Da. The NH2-terminal sequence of GT-3 was GKVLVWPVDFSXWINI. These properties of Bovine 4HBGT were very similar to those of rat UDP-glucuronyltransferase glucuronizing xenobiotics. However, the NH2-terminal sequence of Bovine 4HBGT had higher homology with that of rat liver 4-hydroxybiphenyl UDP-glucuronyltransferase than with that of rat liver 4-nitrophenol UDP-glucuronyltransferase.  相似文献   

12.
Glucosidase II is regarded as a resident protein of the endoplasmatic reticulum. The enzyme removes alpha-1-3-linked glucose from high mannose oligosaccharides N-linked to asparagine residues of glycoproteins. Monospecific antibodies raised against the pig kidney enzyme are used to study the metabolism of the enzyme in a rat hepatoma cell line. These antiglucosidase II antibodies specifically immune precipitate glucosidase II as a 100,000-Da species from [35S]methionine-labeled cells. In addition, protein blotting and immune staining of cell extracts from both rat liver and human and rat hepatoma cell lines show identity in apparent Mr (100,000). Glucosidase II synthesized in the presence of tunicamycin is approximately 94,000 Da, indicating the presence of one or more N-linked oligosaccharide chains. Cell-free protein synthesis of rat hepatoma total RNA demonstrates that glucosidase II is synthesized as a slightly higher molecular weight species as compared to the polypeptide synthesized in whole cells in the presence of tunicamycin, indicating that the enzyme has a cleavable signal sequence. Using a pulse-chase protocol, the apparent molecular weight does not change upon longer chase periods. In addition, the 100,000-Da protein remains sensitive to endo-beta-N-acetylglucosaminidase H regardless of prolonged chase periods. The cells incorporate [3H]mannose into the enzyme; after release with endo-beta-N-acetylglucosaminidase H, most of the radioactivity comigrates with Glc1-Man9-GlcNAc on a gel filtration column. Phase separation in Triton X-114 shows a partition between the aqueous and the Triton phase, the major portion being separated in the aqueous phase. In rat hepatoma cells glucosidase II has a half-life of 50 min. This value is not altered if the cells are grown in the presence of monensin nor of methyl-deoxynoijirimycin. However, tunicamycin and low concentrations or primaquine (raising the pH of acidic compartments) causes a 100% increase in half-life of glucosidase II. We conclude that glucosidase II is a hydrophilic, probably not a transmembrane membrane, protein with a short half-life. It is the first example of an oligosaccharide-processing enzyme not being an integral membrane protein.  相似文献   

13.
We report here the identification on rat liver plasma membranes and microsomes of proteins that bind pancreatic polypeptide (PP) with high affinity and specificity (plasma membranes: KD = 4.6 nM, Bmax = 3.28 pmol/mg protein; microsomes: KD = 3.45 nM, Bmax = 18.7 pmol/mg protein). These binding proteins appeared coupled to a G-protein, since 0.1 mM guanosine 5'-O-(3-thiotriphosphate) decreased the affinity by half. When 125I-labeled PP-binding protein complexes covalently cross-linked with disuccinimido suberate were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two radioactive bands with M(r) values of 52,000 and 38,000 were demonstrated. Both bands were inhibited by unlabeled PP with an IC50 of approximately 5 nM (but not by neuropeptide Y or peptide YY). After the cross-linked complexes were solubilized from liver microsomes with 0.2% Triton X-100 and gel-filtered, they did not interact with the lectins wheat germ agglutinin, Ulex europaeus agglutinin, Ricinus communis agglutinin, and soy bean agglutinin. That these binding proteins may not be glycosylated was further supported by the failure of either peptide N-glycosidase F and endo-beta-N-acetylglucosaminidase F to alter the size of the PP-binding protein complexes on gel electrophoresis. These PP-binding proteins may serve as receptors and mediate a hepatic effect of PP.  相似文献   

14.
To investigate the mechanisms of ER-associated protein degradation (ERAD), this process was reconstituted in vitro. Established procedures for post-translational translocation of radiolabeled prepro-alpha factor into isolated yeast microsomes were modified to inhibit glycosylation and to include a posttranslocation "chase" incubation period to monitor degradation. Glycosylation was inhibited with a glyco- acceptor peptide to compete for core carbohydrates, or by using a radio- labeled alpha factor precursor that had been genetically engineered to eliminate all three glycosylation sites. Inhibition of glycosylation led to the production of unglycosylated pro-alpha factor (p alpha F), a processed form of the alpha factor precursor shown to be a substrate of ERAD in vivo. With this system, both glycosylated and unglycosylated forms of pro-alpha factor were stable throughout a 90-min chase incubation. However, the addition of cytosol to the chase incubation reaction induced a selective and rapid degradation of p alpha F. These results directly reflect the behavior of alpha factor precursor in vivo; i.e., p alpha F is a substrate for ERAD, while glycosylated pro- alpha factor is not. Heat inactivation and trypsin treatment of cytosol, as well as addition of ATP gamma S to the chase incubations, led to a stabilization of p alpha F. ERAD was observed in sec12 microsomes, indicating that export of p alpha F via transport vesicles was not required. Furthermore, p alpha F but not glycosylated pro-alpha factor was found in the supernatant of the chase incubation reactions, suggesting a specific transport system for this ERAD substrate. Finally, the degradation of p alpha F was inhibited when microsomes from a yeast strain containing a disrupted calnexin gene were examined. Together, these results indicate that cytosolic protein factor(s), ATP hydrolysis, and calnexin are required for ER-associated protein degradation in yeast, and suggest the cytosol as the site for degradation.  相似文献   

15.
The 57,000- to 65,000-dalton (Da) Marek's disease herpesvirus A (MDHV-A) antigen glycoprotein (gp57-65) has a 47,000-Da unglycosylated precursor polypeptide (pr47), as determined by immunological detection after cell-free translation of infected-cell mRNA. Cleavage of its signal peptide yielded a 44,000-Da precursor polypeptide molecule (pr44), detected both in vivo after tunicamycin inhibition of glycosylation and in vitro after dog pancreas microsome processing of pr47. High-resolution pulse-chase studies showed that pr44 was quickly glycosylated (within 1 min) to nearly full size, a rapid processing time consistent with a cotranslational mode of glycosylation. This major glycosylation intermediate was further modified 6 to 30 min postsynthesis (including the addition of sialic acid), and mature MDHV-A was secreted 30 to 120 min postsynthesis. Limited apparent secretion of pr44 occurred only in the first minute postsynthesis, in contrast to the later secretion of most of the MDHV-A polypeptide as the fully glycosylated form described above. In addition, in the presence of tunicamycin a small fraction of the newly synthesized MDHV-A protein appeared as a secreted, partially glycosylated, heterogeneously sized precursor larger than pr44. pr44 constituted the major fraction of the new MDHV-A made in the presence of the inhibitor but the precursor was smaller than mature MDHV-A. These data indicate that there is a minor glycosylation pathway not sensitive to tunicamycin and that "normal" glycosylation is not necessary for secretion. Collectively, the data demonstrate that the rapid release of most of the fully glycosylated form of MHDV-A from the cell shortly after synthesis is true secretion in a well-regulated and precisely programmed way and not the result of cell death and disruption.  相似文献   

16.
A liver UDP glucuronosyltransferase (GT) enzyme from either phenobarbital- or 3-methylcholanthrene-treated C57BL/6N mice was isolated by phenyl-Sepharose, DEAE-ion exchange, and UDP hexanolamine chromatographic steps. This enzyme had a broad substrate specificity and was mainly responsible for the microsomal capacity to glucuronidate testosterone, 1-naphthol, and morphine. This UDP glucuronosyltransferase ( GTM1 ) appeared to be at least 95% homogeneous and had a subunit molecular weight of 51,000 using sodium dodecyl sulfate-polyacrylamide gel and two-dimensional gel electrophoreses. Antibodies prepared against the purified protein developed a single immunoprecipitin line by double-diffusion analysis with purified antigen and with solubilized microsomes from both control and drug-induced C57BL/6N and DBA/2N mice. A precipitin line was also observed with microsomal proteins which isoelectrofocused at approximately pH 6.7, but not with those which isoelectrofocused at approximately pH 8.5. GTM1 was, therefore, designated at low-pI form. Immunopurified antibody preferentially inhibited and immunoprecipitated GT activities toward testosterone, 1-naphthol, and morphine. To a lesser extent, activities toward phenolphthalein, 3-hydroxybenzo[a]pyrene, and estrone were inhibited while activities toward 4-nitrophenol and 4-methylumbelliferone were not affected. All activities, however, were immunoadsorbed in the presence of protein A-Sepharose. This observation can be explained by the following results. Immunoprecipitates from labeled microsomes contained primarily a 51,000-Da protein. When the immune complexes were adsorbed with protein A-Sepharose, a 54,000-Da protein as well as the expected 51,000-Da GTM1 was detected. This 54,000-Da protein was associated with the glucuronidation of 3-hydroxybenzo[a]pyrene and 4-nitrophenol, and was designated GTM2 .  相似文献   

17.
1. Translation of poly(A) RNA extracted from the nervous tissue of locusts in a reticulocyte lysate system led to polypeptides with a broad spectrum of molecular weights. 2. Using anti-locust acetylcholine receptor (AChR) antisera, polypeptides with a molecular weight of about 50,000 were immunoprecipitated. These peptides comprised about 0.3% of the total translation products. 3. Cotranslational incubation with pancreatic rough microsomes resulted in a glycosylated 60,000-dalton immunoprecipitate. 4. Density-gradient analysis of in vitro synthesized and glycosylated receptor polypeptides indicated that no assembly of subunits had taken the place under the in vitro conditions.  相似文献   

18.
The distribution of cell surface heparan sulfate proteoglycans (HSPGs) was determined in rat liver by immunocytochemistry. A polyclonal antibody was raised against HSPGs purified from rat liver microsomes which specifically immunoprecipitated liver membrane HSPGs. It was shown to recognize both the heparin-releasable and membrane- intercalated form of membrane HSPGs and to recognize determinants on the core protein of these HSPGs. By immunocytochemistry membrane HSPGs were localized to hepatocytes. The distribution of HSPGs at the cell surface of the hepatocyte was restricted to the sinusoidal domain of the plasmalemma; there was little or no staining of the lateral or bile canalicular domains. Intracellularly, HSPGs were occasionally detected in cisternae of the rough endoplasmic reticulum and were regularly found in Golgi cisternae--usually distributed across the entire Golgi stack. HSPGs were also localized in some endosomes, lysosomes, and cytoplasmic vesicles of hepatocytes. We conclude that the HSPGs recognized by this antibody have a restricted distribution in rat liver: they are largely confined to the sinusoidal plasmalemmal domain and to biosynthetic and endocytic compartments of hepatocytes.  相似文献   

19.
The precursor protein to the chick corneal keratan sulfate proteoglycan was identified by immunoprecipitation with antiserum to its core protein from lysates of [35S]methionine-pulsed corneas and corneal fibroblasts in cell culture. Antiserum to the keratan sulfate proteoglycan immunoprecipitated a doublet of Mr 52,000 and 50,000 and minor amounts of a Mr 40,000 protein from pulsed corneas. Pulse-chase experiments, which permitted the conversion of the precursor proteins to proteoglycans and digestion of the glycosaminoglycans on immunoprecipitated proteoglycans with keratanase or chondroitinase ABC, showed that the Mr 52,000-50,000 doublet was converted to a keratan sulfate proteoglycan and the Mr 40,000 protein was converted to a chondroitin sulfate proteoglycan. Chick corneal fibroblasts in cell culture primarily produced the smaller (Mr50,000) precursor protein, and in the presence of tunicamycin the precursor protein size was reduced to Mr35,000, which indicates that the core protein contains approximately five N-linked oligosaccharides. Pulse-chase experiments with corneal fibroblasts in culture showed that the precursor protein was processed and secreted into the medium. However, its sensitivity to endo-beta-galactosidase and resistance to keratanase indicate that the precursor protein was converted to a glycoprotein with large oligosaccharides and not to a proteoglycan. This suggests that, although the precursor protein for the proteoglycan is produced in cultured corneal fibroblasts, the sulfation enzymes for keratan sulfate may be absent.  相似文献   

20.
By adopting biotin switch method, we recently reported that liver microsomal glutathione transferase 1 (MGST1) might not be a protein target for S-nitrosylation in rat microsomes or in vivo. However, alternative analytic methods are needed to confirm this observation, as a single biotin switch method in judging specific protein S-nitrosylation in biological samples is increasingly recognized as insufficient, or even unreliable. Besides, only MGST1 localized on endoplasmic reticulum (ER), but not mitochondria which favors protein S-nitrosylation was examined in the previous report. Present study was therefore carried out to address these issues. Primary cultured hepatocytes were used. A physiological existing nitric oxide (NO) donor S-nitrosoglutathione (GSNO) was adopted to trigger protein S-nitrosylation. MGST1 was immunoprecipitated and its S-nitrosothiol content was measured by the NO probe 2,3-diaminonaphthalene. In parallel, S-nitrosylated proteins were immunoprecipitated by a monoclonal anti-S-nitrosocysteine antibody and probed with an anti-MGST1 antibody. In hepatocytes, neither ER nor mitochondria were found to contain S-nitrosylated MGST1 after GSNO treatment, showing that differently distributed MGST1 was consistently un-nitrosylable in the cellular environment. But under broken cell conditions, when samples were incubated directly with GSNO, MGST1 S-nitrosylation was indeed detectable in both the microsomal and mitochondrial proteins, indicating that previous failure in detecting MGST1 S-nitrosylation in microsomes is due to the limitations of biotin switch method. These results clearly, if not definitely, demonstrate that MGST1 is not a ready candidate for S-nitrosylation in the cellular content, despite its susceptibility to S-nitrosylation under broken cell conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号