首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane flow through the cell is a highly dynamic process in which intracellular compartments communicate via tubulo-vesicular structures shuttling cargo molecules to their destinations. Transport carriers are formed at a donor compartment and navigate through the cytoplasm to the target organelle, on which they subsequently dock and fuse. Many of these events are regulated by the cooperative action of monomeric rab GTPases and their effector proteins. Research in recent years resulted in the identification of many rab effectors, providing first glimpses how the GTPase switch of individual rab proteins is utilized in discrete transport steps.  相似文献   

2.
Small GTP binding proteins of the rab family are associated with the cytoplasmic surface of compartments of the central vacuolar system. Several of them, including rab5, rab4 and rab11, are localized to early endocytic organelles where they regulate distinct events in the transferrin receptor pathway. Whereas rab5 is controlling transport to early endosomes, rab4 and rab11 are involved in the regulation of recycling back to the plasma membrane. How GTP-hydrolysis of rab bound GTP is related to the role of these proteins in endocytosis is not yet known, but quick progress is being made towards this goal through the identification of proteins regulating the activity of these rab proteins.  相似文献   

3.
Exocytic events are tightly regulated cellular processes in which rab GTPases and their interacting proteins perform an important function. We set out to identify new binding partners of rab3, which mediates regulated secretion events in specialized cells. We discovered Zwint-1 as a rab3 specific binding protein that bound preferentially to rab3c. The interaction depends on a critical residue in rab3c that determines the binding efficiency of Zwint-1, which is immaterial for interaction with rabphilin3a. Rab3c and Zwint-1 are expressed highly in brain and colocalized extensively in primary hippocampal neurons. We also found that SNAP25 bound to the same region in Zwint-1 as rab3c, suggesting a new role for the kinetochore protein Zwint-1 in presynaptic events that are regulated by rab3 and SNAP25.  相似文献   

4.
Seven cDNA clones corresponding to the rab1, rab2, rab3A, rab3B, rab4, rab5, and rab6 genes were isolated from a human pheochromocytoma cDNA library. They encode 23-25 kDa polypeptides which share approximately 30-50% homology and belong to the ras superfamily. The rab1, rab2, rab3A, and rab4 proteins are the human counterparts of the rat rab gene products that we have previously characterized. Comparison of the seven human rab proteins with the yeast YPT1 (YPT1p) and SEC4 (SEC4p) proteins reveals highly significant sequence similarities. H-rab1p shows 75% amino acid identity with YPT1p and may be therefore considered as its human counterpart. The other proteins share approximately 40% homology with YPT1p and SEC4p. The homology (approximately 30%) between these rab proteins and p21ras is restricted to the four conserved domains involved in the GTP/GDP binding. Human rab proteins were produced in Escherichia coli. Large amounts of rab proteins in soluble form can be extracted and purified without the use of detergents. All six proteins bind GTP and exhibit GTPase activities. A possible involvement of the rab proteins in secretion is discussed.  相似文献   

5.
Following entry into non-phagocytic HeLa cells, the facultative pathogen Salmonella typhimurium survives and replicates within a membrane-bound vacuole. Preceding the initiation of intracellular replication there is a lag phase, during which the bacteria modulate their environment. This phase is characterized by the rapid recycling of early endosomal proteins present on the nascent vacuole followed by the acquisition of a subset of lysosomal proteins. To gain a better understanding of the mechanism of intracellular survival, we have followed the biogenesis of the S. typhimurium-containing vacuole (SCV) in HeLa cells expressing different mutant forms of the small GTPase rab7. We demonstrate that the SCV recruits pre-existing lysosomal glycoproteins (Lgps) in a rab7-dependent manner, without directly interacting with lysosomes. We also show the transient accumulation, in the vicinity of the SCV, of novel rab7- and Lgp-containing vesicles containing very low amounts of cathepsin D. The size of these vesicles is dependent on rab7 activity, suggesting a role for rab7 in their homotypic fusion. Taken together, these results indicate that rab7 regulates SCV biogenesis during the phase characterized by the rapid acquisition of lysosomal proteins. We propose that SCV maturation involves its interaction with rab7/Lgp-containing vesicles which are possible intermediate cargo components of the late endocytic pathway.  相似文献   

6.
Rab proteins comprise a family of small GTPases that serve a regulatory role in vesicular membrane traffic. Geranylgeranylation of these proteins on C-terminal cysteine motifs is crucial for their membrane association and function. This post-translational modification is catalysed by rab geranylgeranyl transferase (Rab-GGTase), a multisubunit enzyme consisting of a catalytic heterodimer and an accessory component, named rab escort protein (REP)-1. Previous in vitro studies have suggested that REP-1 presents newly synthesized rab proteins to the catalytic component of the enzyme, and forms a stable complex with the prenylated proteins following the transfer reaction. According to this model, a cellular factor would be required to dissociate the rab protein from REP-1 and to allow it to recycle in the prenylation reaction. RabGDP dissociation inhibitor (RabGDI) was considered an ideal candidate for this role, given its established function in mediating membrane association of prenylated rab proteins. Here we demonstrate that dissociation from REP-1 and binding of rab proteins to the membrane do not require RabGDI or other cytosolic factors. The mechanism of REP-1-mediated membrane association of rab5 appears to be very similar to that mediated by RabGDI. Furthermore, REP-1 and RabGDI share several other functional properties, the ability to inhibit the release of GDP and to remove rab proteins from membranes; however, RabGDI cannot assist in the prenylation reaction. These data suggest that REP-1 is per se sufficient to chaperone newly prenylated rab proteins to their target membranes.  相似文献   

7.
rab3A is a low molecular weight (LMW) GTP-binding protein specifically expressed in brain and localized to synaptic vesicles. rab3A has been proposed to play a role in neurotransmitter release by regulating membrane flow in the nerve terminal. In an attempt to define other LMW GTP-binding proteins that may regulate neurotransmitter release, seven cDNA clones encoding new members of the rab family of LMW GTP-binding proteins were isolated from a rat brain cDNA library. The rab proteins contain the four conserved structural domains essential for GTP binding in addition to domains required for membrane localization and effector protein interactions. One protein, rab16, is closely related to members of the rab3 subfamily, whereas two others are assigned as the rat homologs of canine rab8 and rab10. Four additional clones, rab12, rab13, rab14, and rab15, revealed unique sequences and are new members of the rab family of LMW GTP-binding proteins. The patterns of expression of rab15 and rab3A closely overlap but differ from that observed for all other known LMW GTP-binding proteins. This data suggests that rab15 may act in concert with rab3A in regulating aspects of synaptic vesicle membrane flow within the nerve terminal.  相似文献   

8.
Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11- positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome.  相似文献   

9.
SNARE and rab protein family members were originally identified in terminally differentiated cell types. These proteins are phylogenetically conserved and while compelling evidence demonstrates their involvement in the secretory pathway, their exact function is debated. We recently identified SNARE protein family members in the sea urchin egg and provided evidence that rab3 functions in the exocytosis of cortical granules. Here we tested the hypothesis that these same proteins might also be present throughout embryogenesis to mediate membrane fusion events. We provide evidence that the sea urchin possesses a low complexity of gene family members of syntaxin, VAMP, and rab3 and that these proteins are not only present during development, but are enriched in regions of the embryo with active secretory roles. We found accumulation of each family member in the apical and basal aspects of cleaving blastomeres, indicative of bidirectional secretion into the extraembryonic environment and blastocoel. Elevated levels of syntaxin, VAMP, and rab3 were also found in the mesodermally derived pigment cells that invade and move within the ectoderm. These cells likely rely on SNARE and rab proteins to enable mobility by mediating the secretion of enzymes that break adhesion to neighboring cells and the extracellular matrix. In addition, these secretory proteins are enriched in the gut following gastrulation. Thus, we conclude that VAMP, syntaxin, and rab3 mediate a variety of secretory events that is important for development.  相似文献   

10.
Transport through the endocytic pathway is inhibited during mitosis. The mechanism responsible for this inhibition is not understood. Rab4 might be one of the proteins involved as it regulates transport through early endosomes, is phosphorylated by p34(cdc2) kinase, and is translocated from early endosomes to the cytoplasm during mitosis. We investigated the perturbation of the rab4 GTPase cycle during mitosis. Newly synthesized rab4 was less efficiently targeted to membranes during mitosis. By subcellular fractionation of mitotic cells, we found a large increase of cytosolic rab4 in the active GTP-form, an increase not associated with the cytosolic rabGDP chaperone GDI. Instead, phosphorylated rab4 is in a complex with the peptidyl-prolyl isomerase Pin1 during mitosis, but not during interphase. Our results show that less efficient recruitment of rab4 to membranes and a bypass of the normal GDI-mediated retrieval of rab4GDP from early endosomes reduce the amount of rab4GTP on membranes during mitosis. We propose that phosphorylation of rab4 inhibits both the recruitment of rab4 effector proteins to early endosomes and the docking of rab4-containing transport vesicles. This mechanism might contribute to the inhibition of endocytic membrane transport during mitosis.  相似文献   

11.
S D Conner  G M Wessel 《FASEB journal》2000,14(11):1559-1566
Rabs are monomeric GTP binding proteins belonging to the ras superfamily that function throughout the secretory pathway. Members of the rab3 family function in the final steps of the secretory pathway, vesicle fusion with the plasma membrane. In contrast to mammalian systems with several rab3 isoforms (rab3A-D), a single family member homologue of rab3 is present in the rapidly dividing cleavage stage sea urchin embryo that localizes to numerous vesicles enriched at the cell cortex. We hypothesized that whereas the contents of these rab3-positive vesicles may contribute to the embryonic extracellular matrix, the membrane and its constituent proteins may be important for other aspects of cell division. We tested the function of rab3 in cell division by the microinjection of either antibodies or competing effector domain peptides to interfere with its function. We found that perturbing rab3 function results in cessation of cell division, whereas cells injected with either heat-inactivated antibodies or control scrambled peptides develop as normal. Moreover, neither endocytosis nor general membrane topology are affected by rab3 perturbation. Thus, we conclude that rab3-associated vesicles and/or their contents are critical for cell division.  相似文献   

12.
The rab subfamily of small GTPases has been demonstrated to play an important role in the regulation of membrane traffic in eukaryotic cells. Compared with nonpolarized cells, epithelial cells have distinct apical and basolateral transport pathways which need to be separately regulated. This raises the question whether epithelial cells require specific rab proteins. However, all rab proteins identified so far were found to be equally expressed in polarized and nonpolarized cells. Here we report the identification of rab17, the first epithelial cell- specific small GTPase. Northern blot analysis on various mouse organs, revealed that the rab17 mRNA is present in kidney, liver, and intestine but not in organs lacking epithelial cells nor in fibroblasts. To determine whether rab17 is specific for epithelial cells we studied its expression in the developing kidney. We found that rab17 is absent from the mesenchymal precursors but is induced upon their differentiation into epithelial cells. In situ hybridization studies on the embryonic kidney and intestine revealed that rab17 is restricted to epithelial cells. By immunofluorescence and immunoelectron microscopy on kidney sections, rab17 was localized to the basolateral plasma membrane and to apical tubules. Rab proteins associated with two distinct compartments have been found to regulate transport between them. Therefore, our data suggest that rab17 might be involved in transcellular transport.  相似文献   

13.
Rab proteins, one of the subfamilies of ras-like small GTP-binding proteins, are attached to cellular compartments or transport vesicles and may determine the specificity of fusion between these compartments and vesicles. It has been proposed that they alternate between a membrane-bound and a cytosolic state during their functional cycle. We have used a photo-crosslinking approach to identify their cytosolic interaction partners. In vitro synthesized rab5 was cross-linked in the presence of ATP mainly to three cytosolic proteins of 52, 65, and 85 kDa. Sucrose density gradient centrifugation of the cross-linked products suggested that they were part of a 10-14 S complex. Furthermore, rab5 was cross-linked to these and additional cytosolic proteins of 42, 48, and 160 kDa in the absence of ATP. Unexpectedly, upon ATP depletion of the cytosol cross-linked and noncross-linked rab5 was found in a sedimentable high molecular weight structure. Other members of the rab subfamily, but not N-ras, also sedimented under these conditions. Electrophoretic and electron microscopic analysis of the pelleted material revealed that it contained actin filament bundles and intermediate filaments. Our data suggest that cytosolic rab proteins interact with several proteins in a 10-14 S complex, and that the rab proteins may interact directly or indirectly via this complex with the cytoskeleton.  相似文献   

14.
Low molecular mass GTP-binding proteins encoded by the mammalian rab genes are found in membranes of the Golgi complex and endosomes, suggesting that they play a role in the movement of exocytic and endocytic vesicles. The basis for the membrane association of these proteins has not been defined. Herein, we demonstrate that terminal cysteine residues in the rab1B, rab2, and rab5 proteins undergo thioether modification by isoprenyl groups when these proteins are translated in vitro in the presence of a radiolabeled isoprenoid precursor, [3H]mevalonate. Results of gel permeation chromatography of the radiolabeled hydrocarbons suggest that these proteins are modified specifically by isoprenyl groups of the 20-carbon diterpene class, rather than the 15-carbon farnesyl class known to be involved in modification of ras proteins. The rab1 and rab2 proteins lack the carboxyl-terminal amino acid motif common to all previously identified isoprenylated proteins, i.e. CXXX, where X is an unspecified amino acid. Analysis of altered translation products generated by site-directed mutagenesis indicates that modification of rab1B protein requires an intact carboxyl-terminal sequence consisting of GGCC. This represents a new amino acid motif for isoprenylation.  相似文献   

15.
Rab proteins are a family of ˜25kD ras-related GTPases which are associated with distinct intracellular membranes where they control vesicle traffic between intracellular compartments. The late-endosomal rab protein rab71–207, (lacking only the C-terminal lipids of the native molecule) and three C-terminal truncated constructs rab71–202, rab71–197and rab71–182were purified using an E. coli expression system. The C-terminal tail region of rab proteins is of special interest because it is thought to target rab proteins to particular intracellular membranes. A comparison of TOCSY-NMR spectra from intact rab71–207and the tail-less construct rab71–182suggested that much of the C-terminal tail is flexible in solution. The GTP hydrolysis, and GDP association and dissociation rates for all the truncated and intact constructs were similar, showing that the tail region of rab71–207has little influence on the hydrolysis and exchange rates of the nucleotide. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The monomeric GTPase rab4 is associated with early endosomes and regulates recycling vesicle formation. Because the function of rab proteins in the biosynthetic pathway does not appear to depend on cycling between membranes and cytosol, we were interested to investigate whether or not this holds true for rab function in the endocytic pathway. We created a chimeric rab4 protein (NHrab4cbvn) in which the carboxyl-terminal prenylation motif was replaced by the transmembrane domain of cellubrevin. The chimeric protein was permanently attached to membranes, properly targeted to early endosomes, and bound guanine nucleotide to the same extent as wild type rab4. However, in transport assays we found that basolaterally endocytosed transferrin was less efficiently transported to the apical cell surface in Madin-Darby canine kidney cells transfected with NHrab4cbvn than in cells expressing wild type rab4. Hence, rab4 function requires ongoing cycles of association and dissociation from early endosomes. This cycle is altered during mitosis when rab4 accumulates in the cytoplasm through phosphorylation by a mitotic kinase. We show here, using a rab4 construct that is permanently hooked onto membranes, that the membrane-bound pool of rab4 is targeted by a mitotic kinase.  相似文献   

17.
We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.  相似文献   

18.
p21ras and several other ras-related GTP-binding proteins are modified post-translationally by addition of 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoids to cysteines within a conserved carboxyl-terminal sequence motif, Caa(M/S/L), where a is an aliphatic amino acid. Proteins ending with M or S are substrates for farnesyltransferase, whereas those ending with L are modified preferentially by geranylgeranyltransferase. We recently reported that GTP-binding proteins encoded by rab1B (GGCC), rab2 (GGCC), and rab5 (CCSN) are modified by 20-carbon isoprenyl derivatives of [3H]mevalonate when translated in vitro, despite having carboxyl-terminal sequences distinct from the Caa(M/S/L) motif. We now show that these proteins function as specific acceptors for geranylgeranyl in vitro and are modified by 20-carbon isoprenyl groups in COS cells metabolically labeled with [3H]mevalonate. Proteins encoded by rab4 and rab6, with yet another distinct carboxyl-terminal motif (xCxC), are similarly modified by 20-carbon isoprenoids in vitro and in vivo. The geranylgeranyl modification of rab5 protein (CCSN) is catalyzed by an enzyme in brain cytosol but not by a purified geranylgeranyltransferase that modifies GTP-binding proteins with the CaaL motif. Unlike the prenylation of proteins with Caa(M/S/L) termini, the prenylation of rab5 protein is not inhibited by a synthetic peptide based on its carboxyl-terminal sequence (TRNQCCSN). When cellular isoprenoid synthesis is blocked by treatment of cells with lovastatin, rab proteins that are normally localized in membranes of the endoplasmic reticulum, Golgi apparatus, and endosomes accumulate in the cytosol. This change in rab protein localization is reversed by providing cells with mevalonate. These findings suggest that geranylgeranyl modification underlies the ability of rab GTP-binding proteins to associate with intracellular membranes, where they are postulated to function as mediators of vesicular traffic.  相似文献   

19.
Human VPS34 and p150 are Rab7 interacting partners   总被引:7,自引:2,他引:5  
Regulation of membrane trafficking requires the concerted actions of rab proteins, their effectors and several phosphatidylinositol 3'-kinases. Rab7 is required for late endosomal transport and here we establish that the phosphatidylinositol 3'-kinase hVPS34 and its adaptor protein p150 are rab7 interacting partners. The hVPS34/p150 complex colocalized with rab7 on late endosomes and hVPS34 activity was dependent on nucleotide cycling of rab7. In addition, total cellular phosphatidylinositol 3'-phosphate levels were modulated by rab7 expression, suggesting that rab7 activation impacted kinase cycling to early endosomes. The data identify rab7 as an important regulator of late endosomal hVPS34 function and link rab7 to the regulation of phosphatidylinositol 3'-kinase cycling between early and late endosomes.  相似文献   

20.
八肋游仆虫Rab家族新成员Eo-rab-1N基因的克隆与序列分析   总被引:2,自引:1,他引:1  
李凌燕  柴宝峰  梁爱华  孙永华  王伟 《遗传》2006,28(4):437-442
Rab蛋白家族属于小分子GTP结合蛋白家族Ras超家族中最大的亚家族,主要在囊泡运输中起作用。本实验运用PCR、RT-PCR等技术,从八肋游仆虫中克隆到一种新的rab基因。序列分析结果表明:在大核中,该基因全长884bp,除去两端的端粒与非编码区,该基因在大核中由723bp组成。从小核中克隆相应的基因片段,此基因片段序列与大核中序列一致,表明该基因在小核中无内部删除序列的存在。通过RT-PCR,从mRNA获得的该基因的开放读框为663bp,表明该基因在转录过程中有内含子的删除。大核基因序列和cDNA序列比较,发现60bp的内含子序列位于大核基因的153~212bp之间,并符合一类内含子GU-AG剪切规则。在遗传密码使用上,该基因内部含有2个TGA,在游仆虫中编码半胱氨酸。同时首次发现,八肋游仆虫基因使用TAG作为终止密码子。NCBI上序列比对表明该基因翻译的蛋白与其它物种Rab1蛋白的同源性达49%~52%,因此我们将它命名为Eo-rab-1N,GenBank登录号为DQ105562。Eo-rab-1N与其他物种的Rab1蛋白构建进化树,发现该蛋白的进化与物种的进化保持一致,表明该基因在细胞中具有重要功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号