首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.  相似文献   

2.
K Tanaka 《Human cell》1992,5(3):211-217
The scanning electron microscope (SEM) provides vivid seemingly three dimensional images which are easier to understand for us than transmission electron microscopic images. For this point of view scanning electron microscopy is advantageous in morphological researches of cell fine structures. Nevertheless, there were few studies in this field, because SEM had much lower resolution than transmission electron microscope (TEM) and because there was no adequate method to reveal intracellular structures. In recent years, however, the resolution of SEM has been markedly improved and the specimen preparation techniques have also advanced. In this paper, some of our preparation technique for revealing cell surface structures or intracellular structures, in particular, osmium-DMSO-osmium method, and the results observed by these methods were described. 1) Nucleus. The nucleus was wrapped with a nuclear envelope that consisted of two membranes enclosing a narrow space. On the surface of the envelope many nuclear pores were observed. 2) Endoplasmic reticulum (ER). Rough ER consisted of flattened cisternae, arranged in parallel. The surface were studded with many ribosomes which were often arranged spirally to form polysomes. Smooth ER consisted of tubules. 3) Golgi complex. a) The Golgi stacks were all linked by anastomosing. b) Connection between Golgi stacks and rough ER was often observed. c) Cisternae in a Golgi stack were connected each other. 4) Mitochondria. The mitochondrion was bounded by 2 sheets of unit membrane and the inner membrane projected into the interior of the organelles to make mitochondrial cristae.  相似文献   

3.
Rubredoxin (D.g. Rd), a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas, has been crystallized using the hanging-drop vapor diffusion method and macroseeding method. Rubredoxin crystals diffract to an ultra-high resolution 0.68 A using synchrotron radiation X-ray, and belong to the space group P2(1) with unit-cell parameters a=19.44 A, b=41.24 A, c=24.10 A, and beta=108.46 degrees. The data set of single-wavelength anomalous dispersion signal of iron in the native crystal was also collected for ab initio structure re-determination. Preliminary analysis indicates that there is one monomer with a [Fe-4S] cluster in each asymmetric unit. The crystal structure at this ultra-high resolution will reveal the details of its biological function. The crystal character and data collection strategy for ultra-high resolution will also be discussed.  相似文献   

4.
Davies E  Teng KS  Conlan RS  Wilks SP 《FEBS letters》2005,579(7):1702-1706
Visualisation of nano-scale biomolecules aids understanding and development in molecular biology and nanotechnology. Detailed structure of nucleosomes adsorbed to mica has been captured in the absence of chemical-anchoring techniques, demonstrating the usefulness of non-contact atomic force microscopy (NC-AFM) for ultra-high resolution biomolecular imaging. NC-AFM offers significant advantages in terms of resolution, speed and ease of sample preparation when compared to techniques such as cryo-electron microscopy and X-ray crystallography. In the absence of chemical modification, detailed structure of DNA deposited on a gold substrate was observed for the first time using NC-AFM, opening up possibilities for investigating the electrical properties of unmodified DNA.  相似文献   

5.
Confocal laser scanning microscopy (CLSM) was utilized to examine samples from an aquifer microcosm that was used to investigate microbially mediated losses in hydraulic conductivity. Samples were fixed, dehydrated and dried to prepare the biological material in a fashion similar to that used previously for viewing under the scanning electron microscope. Then, samples were prepared as thin-sections by employing soil micromorphological techniques. Serial images generated by the CLSM technique were visualized using computer three-dimensional rendering software. Results from the CLSM technique were compared with simple fluorescence microscopy of thin-sections and scanning electron microscopy (SEM) of samples from the microcosm. Computer visualization of serial sections with the CLSM technique provided images on a submicron scale in three dimensions. SEM has a much higher resolution, on a nanometer scale, but the results are not three dimensional. Artifacts associated with thin-section preparation are minimal for natural porous media composed mostly of sand, such as aquifer materials. Also, CLSM images are affected minimally by changes to biological material due to sample preparation, whereas artifacts associated with SEM images are very prominent, due to the higher magnification and resolution. CLSM of thin-sections and SEM are very powerful methods for viewing microbial growth in natural porous media, but CLSM is preferable because it allows three-dimensional visualization and measurements of cells and aggregates with few artifacts.  相似文献   

6.
The recent development of ultra-high resolution field emission scanning electron microscopy has opened exciting new opportunities in many scientific and engineering applications at the molecular scale. It overcomes the instrumentation limitations of low resolution in SEM and uncertainty in TEM due to artifacts imposed by sample preparation.Applications of field emission scanning electron microscopy (FESEM) to polymer membrane research such as studies of surface morphology of finely porous membranes and mechanisms of membrane fouling are illustrated with examples. The advantages of the technique, especially the low voltage requirements of FESEM for surface observation, are also discussed in comparison with TEM (replica) and conventional SEM.  相似文献   

7.
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.  相似文献   

8.
The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.  相似文献   

9.
Fluorescence microscopy has become an essential tool for biological research because it can be minimally invasive, acquire data rapidly, and target molecules of interest with specific labeling strategies. However, the diffraction-limited spatial resolution, which is classically limited to about 200 nm in the lateral direction and about 500 nm in the axial direction, hampers its application to identify delicate details of subcellular structure. Extensive efforts have been made to break diffraction limit for obtaining high-resolution imaging of a biological specimen. Various methods capable of obtaining super-resolution images with a resolution of tens of nanometers are currently available. These super-resolution techniques can be generally divided into three primary classes: (1) patterned illumination- based super-resolution imaging, which employs spatially and temporally modulated illumination light to reconstruct sub-diffraction structures; (2) single-molecule localization-based super-resolution imaging, which localizes the profile center of each individual fluo- rophore at subdiffraction precision; (3) bleaching/blinking-based super-resolution imaging. These super-resolution techniques have been utilized in different biological fields and provide novel insights into several new aspects of life science. Given unique technical merits and commercial availability of super-resolution fluorescence microscope, increasing applications of this powerful technique in life science can be expected.  相似文献   

10.
Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre‐scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error‐prone manual tasks of cutting and handling large numbers of sections, and imaging them one‐by‐one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z‐resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block‐face electron microscopy (SBEM), focused ion beam SEM (FIB‐SEM) and automated tape‐collecting ultramicrotome SEM (ATUM‐SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.  相似文献   

11.
Two scanning electron microscopy (SEM) electron-specimen interactions that provide images based on sample crystal structure, electron channelling and electron backscattered diffraction, are described. The SEM operating conditions and sample preparation are presented, followed by an example application of these techniques to the study of pyritised plant material. The two approaches provide an opportunity to examine simultaneously, at higher magnifications normally available optically, detailed specimen anatomy and preservation state. Our investigation suggests that whereas both techniques have their advantages, the electron channelling approach is generally more readily available to most SEM users. However, electron backscattered diffraction does afford the opportunity of automated examination and characterisation of pyritised fossil material.  相似文献   

12.
Scanning Electron Microscope (SEM) is a powerful research tool, but since it requires high vacuum conditions, the wet materials and biological samples must undergo a complex preparation that limits the application of SEM on this kind of specimen and often causes the introduction of artifacts. The introduction of Environmental Scanning Electron Microscope (ESEM), working in gaseous atmosphere, represented a new perspective in biological research. Despite the fact that many biological applications have demonstrated the convenience of ESEM, the full potentialities of this technology are still under investigation. In this review, the exploration of the recent literature data confronted with the first results obtained in our experimental work suggest that ESEM represents an important extension of conventional scanning microscopy.  相似文献   

13.
Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM)7, 5, 9, developed and hosted in the authors'' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi)1, 4, 8, vascular networks (India ink)1, 4, and cell body distribution (Nissl)3. The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain6, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research10; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.  相似文献   

14.
In the past, ultrastructural studies on chromosome morphology have been carried out using light microscopy, scanning electron microscopy and transmission electron microscopy of whole mounted or sectioned samples. Until now, however, it has not been possible to use all of these techniques on the same specimen. In this paper we describe a specimen preparation method that allows one to study the same chromosomes by transmission, scanning-transmission and scanning electron microscopy, as well as by standard light microscopy and confocal microscopy. Chromosome plates are obtained on a carbon coated glass slide. The carbon film carrying the chromosomes is then transferred to electron microscopy grids, subjected to various treatments and observed. The results show a consistent morphological correspondence between the different methods. This method could be very useful and important because it makes possible a direct comparison between the various techniques used in chromosome studies such as banding, in situ hybridization, fluorescent probe localization, ultrastructural analysis, and colloidal gold cytochemical reactionsAbbreviations CLSM confocal laser scanning microscope - EM electron microscopy - kV kilovolt(s) - LM light microscope - SEM scanning electron microscope - STEM scanning-transmission electron microscope - TEM transmission electron microscope  相似文献   

15.
Image shift due to beam-induced specimen charging has become the most severe problem in electron microscopy for imaging two-dimensional (2D) crystals of biological macromolecules, especially in the case of highly tilted specimens. Image shift causes diffraction spots perpendicular to the tilt axis to disappear even at medium or low resolution. The yield of good images from tilted specimens prepared on a single layer of continuous carbon support film is therefore very low. In this paper, we have used 2D crystals of aquaporin-4 to investigate the effect of a carbon sandwich preparation method on specimen charging. We find that a larger number of images show sharp diffraction spots perpendicular to the tilt axis if crystals are placed in between two sheets of carbon film as compared to images taken from specimens prepared by the conventional single carbon support film technique. Our results demonstrate that the reproducible carbon sandwich preparation technique overcomes the severe specimen charging problem and thus has the potential to significantly speed up structure analysis by electron crystallography.  相似文献   

16.
Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of alpha-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-alpha-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of alpha-synuclein.  相似文献   

17.
Chung E  Kim D  Cui Y  Kim YH  So PT 《Biophysical journal》2007,93(5):1747-1757
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.  相似文献   

18.
19.
Gold labeling of antigenic sites has become an increasingly useful tool in the study of cultured cell monolayers. If these monolayers are grown on flat substrates, major difficulties in both scanning (SEM) and transmission electron microscopy (TEM) specimen preparation and imaging may result. An alternate surface, that of dextran microcarrier beads, eliminates a majority of these difficulties and facilitates correlative TEM and SEM. The SEM procedure for using backscattered electron imaging requires the use of carbon planchets as the cell growth matrix to eliminate background signals. These planchets are expensive and are not an optimal cell-attachment matrix in that they result in loose and abnormally shaped cells. In contrast, the dextran beads were produced specifically for cell culture and, therefore, provide an excellent surface for growth. The beads have an average diameter of 100 microns, allowing attachment directly to aluminum stubs without signal generation from the aluminum to interfere with the gold signal. With TEM preparation, the monolayer poses the major disadvantage. Specimen preparation for thin sectioning is often preceded by extensive manipulation. In the microcarrier bead system, the beads are directly sectionable, and it is possible to cut five to eight full beads per thin section. This increase in cell surface makes quantification of gold labeling easier and also provides a more representative sampling of the monolayer. The ease of preparation, the decrease in reagents used (via cell pooling), and the ability to use one cell preparation for TEM and SEM make this procedure an ideal technique for gold labeling.  相似文献   

20.
We have determined the three-dimensional image-forming properties of an epifluorescence microscope for use in obtaining very high resolution three-dimensional images of biological structures by image processing methods. Three-dimensional microscopic data is collected as a series of two-dimensional images recorded at different focal planes. Each of these images contains not only in-focus information from the region around the focal plane, but also out-of-focus contributions from the remainder of the specimen. Once the imaging properties of the microscope system are characterized, powerful image processing methods can be utilized to remove the out-of-focus information and to correct for image distortions. Although theoretical calculations for the behavior of an aberration-free microscope system are available, the properties of real lenses under the conditions used for biological observation are often far from an ideal. For this reason, we have directly determined the image-forming properties of an epifluorescence microscope under conditions relevant to biological observations. Through-focus series of a point object (fluorescently-coated microspheres) were recorded on a charge-coupled device image detector. From these images, the three-dimensional point spread function and its Fourier transform, the optical transfer function, were derived. There were significant differences between the experimental results and the theoretical models which have important implications for image processing. The discrepancies can be explained by imperfections of the microscope system, nonideal observation conditions, and partial confocal effects found to occur with epifluorescence illumination. Understanding the optical behavior of the microscope system has indicated how to optimize specimen preparation, data collection, and processing protocols to obtain significantly improved images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号