首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Family-based association methods have recently been introduced that allow testing for linkage in the presence of linkage disequilibrium between a marker and a disease even if there is only incomplete parental-marker information. No such tests are currently available for X-linked markers. This report fills this methodological gap by presenting the X-linked sibling transmission/disequilibrium test (XS-TDT) and the X-linked reconstruction-combination transmission/disequilibrium test (XRC-TDT). As do their autosomal counterparts (S-TDT and RC-TDT), these tests make no assumption about the mode of inheritance of the disease and the ascertainment of the sample. They protect against spurious association due to population stratification. The two tests were compared by simulations, which show that (1) the X-linked RC-TDT is, in general, considerably more powerful than the X-linked S-TDT and (2) the lack of parental-genotype information can be offset by the typing of a sufficient number of sibling controls. A freely available SAS implementation of these tests allows the calculation of exact P values.  相似文献   

2.
3.
4.
5.
6.
Ewens W  Li M 《Human genetics》2008,123(1):97-100
It has recently been claimed in this journal (Zhao et al. in Hum Genet 121:357–367, 2007) that a so-called “entropy-based” TDT test has improved power over the standard TDT test of Spielman et al. (Am J Hum Genet 52:506–516, 1993). We show that this claim is contradicted by standard statistical theory as well as by our simulation results. We show that the incorrect claim arises because of inappropriate assumptions, and also show that the entropy-based statistic has various undesirable properties.  相似文献   

7.
Zhao J  Boerwinkle E  Xiong M 《Human genetics》2007,121(3-4):357-367
Availability of a large collection of single nucleotide polymorphisms (SNPs) and efficient genotyping methods enable the extension of linkage and association studies for complex diseases from small genomic regions to the whole genome. Establishing global significance for linkage or association requires small P-values of the test. The original TDT statistic compares the difference in linear functions of the number of transmitted and nontransmitted alleles or haplotypes. In this report, we introduce a novel TDT statistic, which uses Shannon entropy as a nonlinear transformation of the frequencies of the transmitted or nontransmitted alleles (or haplotypes), to amplify the difference in the number of transmitted and nontransmitted alleles or haplotypes in order to increase statistical power with large number of marker loci. The null distribution of the entropy-based TDT statistic and the type I error rates in both homogeneous and admixture populations are validated using a series of simulation studies. By analytical methods, we show that the power of the entropy-based TDT statistic is higher than the original TDT, and this difference increases with the number of marker loci. Finally, the new entropy-based TDT statistic is applied to two real data sets to test the association of the RET gene with Hirschsprung disease and the Fcγ receptor genes with systemic lupus erythematosus. Results show that the entropy-based TDT statistic can reach p-values that are small enough to establish genome-wide linkage or association analyses.  相似文献   

8.
The transmission/disequilibrium test (TDT), which detects linkage between a marker and disease loci in the presence of linkage disequilibrium, was introduced by Spielman et al. The original TDT requires families in which the genotypes are known for both parents and for at least one affected offspring, and this limits its applicability to diseases with late onset. The sib-TDT, or S-TDT, which utilizes families with affected and unaffected siblings, was introduced as an alternative method, by Spielman and Ewens, and the TDT and S-TDT can be combined in an overall test (i.e., a combined-TDT, or C-TDT). The TDT statistics described so far are for autosomal chromosomes. We have extended these TDT methods to test for linkage between X-linked markers and diseases that affect either males only or both sexes. For diseases of late onset, when parental genotypes are often unavailable, the X-linkage C-TDT may allow for more power than is provided by the X-linkage TDT alone.  相似文献   

9.
Disease association with a genetic marker is often taken as a preliminary indication of linkage with disease susceptibility. However, population subdivision and admixture may lead to disease association even in the absence of linkage. In a previous paper, we described a test for linkage (and linkage disequilibrium) between a genetic marker and disease susceptibility; linkage is detected by this test only if association is also present. This transmission/disequilibrium test (TDT) is carried out with data on transmission of marker alleles from parents heterozygous for the marker to affected offspring. The TDT is a valid test for linkage and association, even when the association is caused by population subdivision and admixture. In the previous paper, we did not explicitly consider the effect of recent history on population structure. Here we extend the previous results by examining in detail the effects of subdivision and admixture, viewed as processes in population history. We describe two models for these processes. For both models, we analyze the properties of (a) the TDT as a test for linkage (and association) between marker and disease and (b) the conventional contingency statistic used with family data to test for population association. We show that the contingency test statistic does not have a chi 2 distribution if subdivision or admixture is present. In contrast, the TDT remains a valid chi 2 statistic for the linkage hypothesis, regardless of population history.  相似文献   

10.
11.
Sebastiani P  Abad MM  Alpargu G  Ramoni MF 《Genetics》2004,168(4):2329-2337
Several solutions have been proposed to extend the transmission disequilibrium test (TDT) to include cases with missing parental genotype. However, completion of the missing parental genotype may bias the test if the underlying missing data mechanism is informative. Furthermore, all these solutions resolve the problem of missing parental genotype, while offspring with missing genotypes are typically ignored. We propose here an extension to the TDT, called robust TDT (rTDT), able to handle incomplete genotypes on both parents and children and that does not rest on any assumption about the missing data mechanism. rTDT returns minimum and maximum values of TDT that are consistent with all the possible completions of the missing data. We also show that, in some situations, rTDT can achieve both greater power and greater significance than the popular TDT analysis of incomplete data. rTDT is applied to a database of markers of susceptibility to Crohn's disease and it shows that only 2 of the 11 markers originally associated with the phenotype do not depend on assumptions about the missing data mechanism.  相似文献   

12.
Family-based association methods such as the transmission/disequilibrium test (TDT) have become very popular during the past few years, often being preferred to case-control studies because family-based approaches avoid the difficulties of ascertainment of appropriate populations of cases and controls for case-control studies. Significant TDT results indicate both linkage and allelic association. However, significant TDT results are often interpreted as implying tight linkage of marker and disease locus, and we shall argue here that, in general, this interpretation is not justified.  相似文献   

13.
When the transmission/disequilibrium test (TDT) is applied to multilocus haplotypes, a bias may be introduced in some families for which both parents have the same heterozygous genotype at some locus. The bias occurs because haplotypes can only be deduced from certain offspring, with the result that the transmissions of the two parental haplotypes are not independent. We obtain an unbiased TDT for individual haplotypes by calculating the correct variance for the transmission count within a family, using information from multiple siblings if they are available. An existing correction for dependence between siblings in the presence of linkage is retained. To obtain an unbiased multihaplotype TDT, we must either count transmissions from one randomly chosen parent or count all transmissions and estimate the significance level empirically. Alternatively, we may use missing-data techniques to estimate uncertain haplotypes, but these methods are not robust to population stratification. An illustration using data from the insulin-gene region in type 1 diabetes shows that the validity and power of the TDT may vary by an order of magnitude, depending on the method of analysis.  相似文献   

14.
15.
The transmission/disequilibrium test (TDT) is a popular method for detection of the genetic basis of a disease. Investigators planning such studies require computation of sample size and power, allowing for a general genetic model. Here, a rigorous method is presented for obtaining the power approximations of the TDT for samples consisting of families with either a single affected child or affected sib pairs. Power calculations based on simulation show that these approximations are quite precise. By this method, it is also shown that a previously published power approximation of the TDT is erroneous.  相似文献   

16.
Brachydactyly type B (BDB), an autosomal dominant disorder, is the most severe of the brachydactylies and is characterized by hypoplasia or absence of the terminal portions of the index to little fingers, usually with absence of the nails. The thumbs may be of normal length but are often flattened and occasionally are bifid. The feet are similarly but less severely affected. We have performed a genomewide linkage analysis of three families with BDB, two English and one Portugese. The two English families show linkage to the same region on chromosome 9 (combined multipoint maximum LOD score 8.69 with marker D9S257). The 16-cM disease interval is defined by recombinations with markers D9S1680 and D9S1786. These two families share an identical disease haplotype over 18 markers, inclusive of D9S278-D9S280. This provides strong evidence that the English families have the same ancestral mutation, which reduces the disease interval to <12.7 cM between markers D9S257 and D9S1851 in chromosome band 9q22. In the Portuguese family, we excluded linkage to this region, a result indicating that BDB is genetically heterogeneous. Reflecting this, there were atypical clinical features in this family, with shortening of the thumbs and absence or hypoplasia of the nails of the thumb and hallux. These results enable a refined classification of BDB and identify a novel locus for digit morphogenesis in 9q22.  相似文献   

17.
18.
Linkage analysis with genetic markers has been successful in the localization of genes for many monogenic human diseases. In studies of complex diseases, however, tests that rely on linkage disequilibrium (the simultaneous presence of linkage and association) are often more powerful than those that rely on linkage alone. This advantage is illustrated by the transmission/disequilibrium test (TDT). The TDT requires data (marker genotypes) for affected individuals and their parents; for some diseases, however, data from parents may be difficult or impossible to obtain. In this article, we describe a method, called the "sib TDT" (or "S-TDT"), that overcomes this problem by use of marker data from unaffected sibs instead of from parents, thus allowing application of the principle of the TDT to sibships without parental data. In a single collection of families, there might be some that can be analyzed only by the TDT and others that are suitable for analysis by the S-TDT. We show how all the data may be used jointly in one overall TDT-type procedure that tests for linkage in the presence of association. These extensions of the TDT will be valuable for the study of diseases of late onset, such as non-insulin-dependent diabetes, cardiovascular diseases, and other diseases associated with aging.  相似文献   

19.
Multimarker transmission/disequilibrium tests (TDTs) are powerful association and linkage tests used to perform genome-wide filtering in the search for disease susceptibility loci. In contrast to case/control studies, they have a low rate of false positives for population stratification and admixture. However, the length of a region found in association with a disease is usually very large because of linkage disequilibrium (LD). Here, we define a multimarker proportional TDT (mTDT P ) designed to improve locus specificity in complex diseases that has good power compared to the most powerful multimarker TDTs. The test is a simple generalization of a multimarker TDT in which haplotype frequencies are used to weight the effect that each haplotype has on the whole measure. Two concepts underlie the features of the metric: the ‘common disease, common variant’ hypothesis and the decrease in LD with chromosomal distance. Because of this decrease, the frequency of haplotypes in strong LD with common disease variants decreases with increasing distance from the disease susceptibility locus. Thus, our haplotype proportional test has higher locus specificity than common multimarker TDTs that assume a uniform distribution of haplotype probabilities. Because of the common variant hypothesis, risk haplotypes at a given locus are relatively frequent and a metric that weights partial results for each haplotype by its frequency will be as powerful as the most powerful multimarker TDTs. Simulations and real data sets demonstrate that the test has good power compared with the best tests but has remarkably higher locus specificity, so that the association rate decreases at a higher rate with distance from a disease susceptibility or disease protective locus.  相似文献   

20.
Hu YQ  Zhou JY  Fung WK 《Genetics》2007,175(3):1489-1504
The recombination rates in meioses of females and males are often different. Some genes that affect development and behavior in mammals are known to be imprinted, and >1% of all mammalian genes are believed to be imprinted. When the gene is imprinted and the recombination fractions are sex specific, the conventional transmission disequilibrium test (TDT) is shown to be still valid for testing for linkage. The power function of the TDT is derived, and the effect of the degree of imprinting on the power of the TDT is investigated. It is learned that imprinting has little effect on the power when the female and male recombination rates are equal. On the basis of case-parents trios, the transmissions from the heterozygous fathers/mothers to their affected children are separated as paternal and maternal, and two TDT-like statistics, TDT(p) and TDT(m), are consequently constructed. It is found that the TDT(p) possesses a higher power than the TDT for maternal imprinting genes, and the TDT(m) is more powerful than the TDT for paternal imprinting genes. On the basis of the parent-of-origin effects test statistic (POET), a novel statistic, TDT incorporating imprinting (TDTI) is proposed to test for linkage in the presence of linkage disequilibrium, which is shown to be more powerful than the TDT when parent-of-origin effects are significant but slightly less powerful than the TDT when parent-of-origin effects are negligible. The validity of the TDT and TDTI is assessed by simulation. The power approximation formulas for the TDT and TDTI are derived and the simulation results show that they are accurate. The simulation study on power comparison shows that the TDTI outperforms the TDT for imprinted genes. The improvement can be substantial in the case of complete paternal/maternal imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号