首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
长期不同养分投入对土壤养分和水稻生产持续性的影响   总被引:5,自引:0,他引:5  
以中国科学院桃源农业生态试验站15a长期田间定位试验为研究对象,分析了不同养分投入对稻田土壤养分和水稻产量可持续性的影响.结果表明,化肥与系统内循环的有机物料循环的肥力效力和产量效应基本一致,有机物料循环更有利于土壤有机质和氮素的积累;在不同养分投入下,土壤耕层有机质和全氮均呈上升趋势,年均增长率分别为1.5%~5.8%和2.5%~9.4%;与试验前相比,不同养分投入耕层磷素变动幅度在-18.3%到30%之间,钾素养分有所亏缺,下降幅度在8.1%~22.6%之间;通过可持续性指数的分析得出,土壤N素养分的可持续性对化肥的依赖性较大,而P、K养分的可持续性则对有机肥的依赖性更高.稻田生态系统具有良好的自维持能力,系统内有机物循环有利于提高稻谷产量的稳定性和可持续性.  相似文献   

2.
施肥措施与稻田生态系统净碳汇效应、经济收益的关系密切。本研究以长期(35年)定位施肥试验田为平台,分析了单独施用化肥(MF)、秸秆还田+化肥(RF)、30%有机肥+70%化肥(OM)和无肥对照(CK)4种不同施肥模式对我国南方双季稻田耕层土壤固碳速率、碳密度、年碳汇平衡和经济收益的影响。研究表明: 不同施肥处理双季稻田耕层土壤碳库变化范围为216.02~866.74 kg·hm-2·a-1,OM处理土壤碳年变化量显著高于MF、RF和CK处理;双季稻田土壤固碳速率为51.5~650.7 kg·hm-2·a-1,表土碳密度为55.64~78.42 t·hm-2,各施肥处理高低顺序均为OM>RF>MF>CK。各施肥处理双季稻田生态系统水稻的碳吸收为4.42~9.32 t C·hm-2·a-1,其高低顺序为OM>RF>MF>CK;与MF处理相比,OM和RF处理稻田土壤净碳汇量分别提高了27.6%和13.6%。各施肥处理双季稻田生态系统的碳成本物质投入变化范围为1.49~2.17 t C·hm-2·a-1,年经济收益变化范围为1.30×103~7.83×103元·hm-2·a-1,其高低顺序为RF>OM>MF>CK;OM、RF和MF处理双季稻田生态系统经济效益的净收益均显著高于CK处理。总之,长期施用有机肥、秸秆还田配施化肥措施均有利于增加双季稻田土壤固碳速率、碳汇效应和经济收益,是提高南方双季稻田土壤有机碳贮量的施肥模式。  相似文献   

3.
在湖南省稻田生态系统长期定位监测点研究了不同施肥措施下稻田土壤碳、氮演变及其耦合特征.结果表明:1986—2003年,无肥处理(对照,CK)稻田土壤有机碳和全氮含量略呈下降趋势;化肥(NPK)处理有机碳和全氮含量基本保持稳定,而有机 无机肥配施处理有机碳和全氮含量均呈增加趋势.与对照相比,化肥处理的土壤有机碳和全氮含量分别提高13%和18%,低量有机肥(LOM)处理分别提高54%和45%,高量有机肥(HOM)处理分别提高89%和67%.统计分析表明,土壤有机碳和全氮含量呈显著正相关(P<0.01).稻田土壤C/N为8.5~12.9,多数分布在10左右.研究表明,有机-无机肥配合施用能在一定程度上促进稻田土壤碳、氮的固定与积累;稻田土壤碳、氮具有较好的耦合关系.  相似文献   

4.
Xiang C G  Zhang P J  Pan G X  Qiu D S  Chu Q H 《农业工程》2006,26(6):1667-1673
Influence of the agricultural management practices on soil quality and the ecosystem functioning has been an increasing concern in soil science and ecology with sustainable agriculture. This study deals with the changes of soil earthworm communityfrom a paddy soil under different long-term fertilizations. The soil earthworms were collected and counted from different fertilizer treated plots in the field after the rape harvest in May 2004, and their taxonomic groups were determined under a binocular stereoscope at the laboratory. The body of the earthworm (Metaphire californica) was crushed by a cell crusher to collect protein, and the protein molecules with different sizes were analyzed by electrophoresis. Furthermore, the Metaphire californica collected was hydrolyzed and the aliquots were subject to an amino acid auto-analyzer. The results showed that totally seven species of earthworms were recognized in the paddy field with the number varying with different fertilization treatments. The structure of earthworm communities was dramatically affected by the fertilization practice. Under chemical fertilization only, both the number of earthworm species and the quantity of individuals were significantly smaller than those under other treatments, or even than those under no fertilization. Furthermore, there was an obvious decrease in the total amino acid and the contents of most individual amino acids of Metaphire californica under chemical fertilization only, compared with those under the combined fertilization of chemical and organic fertilizers. Although chemical fertilizers in combination with rice straw return increased earthworm amino acid content, long-term pig manure application tended to increase earthworm protein content. As a molecular footprint, long-term chemical fertilization caused a reduction in the content of protein with MW less than 25 kd, but a significant increase in that of protein with molecule size around 33 kd. Our study demonstrated that different fertilizations affected not only earthworm population but also diversity and richness in the paddy soil after 16 years of treatment, and that long-term chemical fertilization may impact the soil animal community and, thus, influence the paddy ecosystem functioning for yield stability. This study implicated that not only the community structure but also the amino acid metabolism for life functioning of earthworms in cropland soils may pose significant responses to the agricultural management practices.  相似文献   

5.
Scarcity of water causes a shift from flooded to aerobic conditions for rice production in zinc deficient areas in Northern China. This shift alters soil conditions that affect zinc availability to the crop. This paper concerns the effect of aerobic compared to flooded conditions on crop biomass production, grain yield and zinc content. A field experiment was done with six rice genotypes (Oryza sativa L.) grown on a calcareous soil, both with (23 kg Zn ha−1) and without Zn fertilization. Sampling was conducted at tillering and physiological mature stage. Zn concentration in the shoots was significantly lower at both stages in plants grown in the aerobic field. At maturity, Zn uptake, biomass production, grain yield and Zn-harvest index [grain Zn/(shoot + grain Zn)] were lower under aerobic cultivation. Rice genotypes including aerobic rice and lowland rice differ in degree of response to low Zn supply. A twofold difference was found among aerobic genotypes in grain yield and Zn uptake. Also Zn-harvest index varied significantly. Zn application affected neither grain yield nor grain Zn content, although it significantly improved biomass production in both systems in most genotypes. These results demonstrate that introduction of aerobic rice systems on calcareous soils may increase Zn deficiency problems.  相似文献   

6.
Influence of the agricultural management practices on soil quality and the ecosystem functioning has been an increasing concern in soil science and ecology with sustainable agriculture. This study deals with the changes of soil earthworm communityfrom a paddy soil under different long-term fertilizations. The soil earthworms were collected and counted from different fertilizer treated plots in the field after the rape harvest in May 2004, and their taxonomic groups were determined under a binocular stereoscope at the laboratory. The body of the earthworm (Metaphire californica) was crushed by a cell crusher to collect protein, and the protein molecules with different sizes were analyzed by electrophoresis. Furthermore, the Metaphire californica collected was hydrolyzed and the aliquots were subject to an amino acid auto-analyzer. The results showed that totally seven species of earthworms were recognized in the paddy field with the number varying with different fertilization treatments. The structure of earthworm communities was dramatically affected by the fertilization practice. Under chemical fertilization only, both the number of earthworm species and the quantity of individuals were significantly smaller than those under other treatments, or even than those under no fertilization. Furthermore, there was an obvious decrease in the total amino acid and the contents of most individual amino acids of Metaphire californica under chemical fertilization only, compared with those under the combined fertilization of chemical and organic fertilizers. Although chemical fertilizers in combination with rice straw return increased earthworm amino acid content, long-term pig manure application tended to increase earthworm protein content. As a molecular footprint, long-term chemical fertilization caused a reduction in the content of protein with MW less than 25 kd, but a significant increase in that of protein with molecule size around 33 kd. Our study demonstrated that different fertilizations affected not only earthworm population but also diversity and richness in the paddy soil after 16 years of treatment, and that long-term chemical fertilization may impact the soil animal community and, thus, influence the paddy ecosystem functioning for yield stability. This study implicated that not only the community structure but also the amino acid metabolism for life functioning of earthworms in cropland soils may pose significant responses to the agricultural management practices.  相似文献   

7.
Straw return has been widely recommended as an environmentally friendly practice to manage carbon (C) sequestration in agricultural ecosystems. However, the overall trend and magnitude of changes in soil C in response to straw return remain uncertain. In this meta‐analysis, we calculated the response ratios of soil organic C (SOC) concentrations, greenhouse gases (GHGs) emission, nutrient contents and other important soil properties to straw addition in 176 published field studies. Our results indicated that straw return significantly increased SOC concentration by 12.8 ± 0.4% on average, with a 27.4 ± 1.4% to 56.6 ± 1.8% increase in soil active C fraction. CO2 emission increased in both upland (27.8 ± 2.0%) and paddy systems (51.0 ± 2.0%), while CH4 emission increased by 110.7 ± 1.2% only in rice paddies. N2O emission has declined by 15.2 ± 1.1% in paddy soils but increased by 8.3 ± 2.5% in upland soils. Responses of macro‐aggregates and crop yield to straw return showed positively linear with increasing SOC concentration. Straw‐C input rate and clay content significantly affected the response of SOC. A significant positive relationship was found between annual SOC sequestered and duration, suggesting that soil C saturation would occur after 12 years under straw return. Overall, straw return was an effective means to improve SOC accumulation, soil quality, and crop yield. Straw return‐induced improvement of soil nutrient availability may favor crop growth, which can in turn increase ecosystem C input. Meanwhile, the analysis on net global warming potential (GWP) balance suggested that straw return increased C sink in upland soils but increased C source in paddy soils due to enhanced CH4 emission. Our meta‐analysis suggested that future agro‐ecosystem models and cropland management should differentiate the effects of straw return on ecosystem C budget in upland and paddy soils.  相似文献   

8.
微生物群落功能多样性是土壤质量变化重要的指标,不同作物类型的秸秆还田措施对土壤微生物群落功能多样性具有明显的影响。以位于双季稻主产区不同冬季覆盖作物-双季稻种植模式大田定位试验田为研究对象,以冬闲-双季稻种植模式为对照(CK),应用Biolog-GN技术开展黑麦草-双季稻(Ry)、紫云英-双季稻(Mv)、油菜-双季稻(Ra)和马铃薯-双季稻(Po)种植模式条件下不同冬季覆盖作物秸秆还田后对双季稻田根际土壤微生物功能多样性影响的研究。研究结果表明,早稻和晚稻成熟期,与CK处理相比,冬季覆盖作物秸秆还田处理增加了稻田土壤碳源平均颜色变化率(AWCD),以Po处理AWCD均为最高,均显著高于Ry和CK处理。不同冬季覆盖作物秸秆还田处理土壤微生物代谢多样性指数表现出明显的差异,早稻成熟期,Po处理的Richness、Shannon和McIntosh指数均为最高,其次为Ry、Mv和Ra处理,CK处理最低;晚稻成熟期,各处理的Richness、Shannon和McIntosh指数大小顺序均表现为PoRaMvRyCK。土壤微生物碳源利用的主成分分析结果表明,各冬季覆盖作物秸秆还田处理根际土壤微生物利用的主要碳源为氨基酸类和糖类物质,不同处理间碳源利用类型有差异。冬季覆盖作物秸秆还田措施有利于提高双季稻田根际土壤微生物对碳源的利用能力、物种丰富度和均匀度。  相似文献   

9.
“稻鸭共生”是对我国传统农业稻田养鸭的继承与发展.2010年5-10月在长江流域双季稻主产区湖南布置了稻田养鸭田间试验,以常规稻作为对照,研究了早、晚稻两季“稻鸭共生”生态系统氮(N)循环特征.结果表明:“早稻-鸭”共生系统N输出是239.5 kg·hm-2,其中鸭产品N是12.77 kg·hm-2.“晚稻-鸭”共生系统N输出是338.7 kg·hm-2,其中鸭产品N是23.35 kg·hm-2.在早、晚稻两季,“稻鸭共生”系统在目前的N养分投入水平下,土壤均存在N亏缺;鸭子系统N输入主要来自系统外投入的饲料N;鸭粪N作为系统内被循环利用的养分,早、晚稻两季循环率分别为2.5%和3.5%.两季稻作后,土壤截存的N量是178.6 kg·hm-2.  相似文献   

10.
农田生态系统中 ,营养元素循环与平衡的研究已经受到许多学者的广泛关注 ,主要集中于N ,P ,K三要素的研究[1 ,2 ] 。微量元素养分循环的研究虽有一些报道[3 ,4] ,但主要集中于B和Zn元素 ,而对Mn的研究尚未见报道。微量元素Mn具有植物营养和污染危害双重作用。在我国 ,Mn肥的应用研究 ,包括肥效、施肥技术、丰缺诊断等已取得较大进展 ,Mn对环境污染及危害影响研究也取得了一些成果。随着Mn肥应用面积日益扩大 ,研究其在土壤 植物系统中循环与平衡 ,以维持Mn肥对作物适量供应 ,促进农田生态系统Mn肥的良性循环以及控制土…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号