首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel(II) complexes of N,N′-dimethyl-N,N′-bis(pyridyl-2yl-methyl)ethylene-diamine (L1), N,N′-dimethyl-N,N′-bis(pyridyl-2-ylmethyl)-1,2-diaminopropane (L2) and N,N′-dimethyl-N,N′-bis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L3) were prepared and their spectroscopic and redox properties studied. The distorted octahedral structure was determined for [NiL3ClCH3OH](ClO4) by using X-ray crystallography. The electronic spectral behavior of the complexes at different pHs was analyzed; it is shown that a new band grew at the expense of the other band intensity in acid media. The redox properties of ligands and their complexes show the peaks of Ni(II) → Ni(III) and Ni(II) → Ni(0) as these were detected at low concentration while Ni(II) → Ni(I) process was detectable clearly at high concentration. Furthermore, the interaction studies of 2-mercaptoethanesulfonic acid as a simulator of coenzyme M reductase (CoM) with NiN4 chromophores are discussed.  相似文献   

2.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

3.
The synthesis and structural characterization of NiII, CuII and ZnII complexes of two chelating 1,2,4-oxadiazole ligands, namely 3,5-bis(2′-pyridyl)-1,2,4-oxadiazole (bipyOXA) and 3-(2′-pyridyl)5-(phenyl)-1,2,4-oxadiazole (pyOXA), is here reported. The formed hexacoordinated metal complexes are [M(bipyOXA)2(H2O)2](ClO4)2 and [M(pyOXA)2(ClO4)2], respectively (M = Ni, Cu, Zn). X-ray crystallography, 1H and 13C NMR spectroscopy and C, N, H elemental analysis data concord in attributing them an octahedral coordination geometry. The two coordinated pyOXA ligands assume a trans coplanar disposition, while the two bipyOXA ligands are not. The latter result is a possible consequence of the formation of H-bonds between the coordinated water molecules and the nitrogen atom of the pyridine in position 5 of the oxadiazole ring. The expected splitting of the d metal orbitals in an octahedral ligand field explains the observed paramagnetism of the d8 and d9 electron configuration of the nickel(II) and copper(II) complexes, respectively, as determined by the broadening of their NMR spectra.  相似文献   

4.
The reactions of [Cu(NCCH3)4]BF4 with 2,6-(dicyclohexylphosphinomethyl)pyridine and 2-(diisopropylphosphinomethyl)-1-methylimidazole afford Cu(I) species that convert slowly to the Cu(II) complexes [CuCl{Cy2P(O)CH2pyCH2P(O)Cy2}(H2O)]BF4 and [Cu{MelmCH2P(O)Pri2}2](BF4)2, respectively, when their solutions are exposed to air. The structures of the Cu(II) complexes have been established by X-ray crystallography.  相似文献   

5.
Multifunctional Schiff base ligands Ln, namely the tetradentate N,N-bis[2-hydroxy-5-(azopyridine)benzylidene]propylendiamine and the bidentate N-dodecyl-5-(azopyridine)salicylaldimine, both containing a flexible azo spacer, a metallation site and a terminal pyridine group, were synthetised and fully characterised. Mesogenic structures, analysed by polarised optical microscopy, DSC and powder X-ray diffraction, were obtained from self-assembly of the mono or bifunctional hydrogen-bond acceptors Ln with carboxylic acid donors. Ni(II) mono and bis-chelate, four- and six-coordinated, Ln derivatives were synthetised. The octahedral structure of the [Ni(py)2(L2)2] complex was confirmed by single crystal X-ray analysis. H-bonded self-assembly of Ni(II) complexes and carboxylic acids results in the formation of supramolecular networks whose structure and thermal stability were studied by DSC and powder X-ray diffraction analysis at variable temperatures.  相似文献   

6.
Some complexes containing “[Ni([18]py2N4)]2+, [Ni([20]py2N4)]2+, [Ni(Bzo2[18]py2N4)]2+ and [Ni(Bzo2[20]py2N4)]2+” were successfully prepared by the template synthesis of 2,6-diacetylpyridine with [bis(diamine)nickel(II)]; [Ni(N-N)2]2+; within the zeolite-Y. These complexes were entrapped in the supercage of Y-zeolite by a two-step process in the liquid phase: (i) inclusion of a Ni(II) precursor complex, [Ni(diamine)2]2+@NaY, and (ii) template synthesis of the nickel(II) precursor complex with 2,6-diacetylpyridine. The new complex nanoparticles entrapped within the zeolite-Y “[Ni([18]py2N4)]2+@NaY, [Ni([20]py2N4)]2+@NaY, [Ni(Bzo2[18]py2N4)]2+@NaY, [Ni(Bzo2[20]py2N4)]2+@NaY” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV-Vis, XRD, BET, DRS). Analysis of the data indicates that the Ni(II) complexes are encapsulated within the zeolite-Y and exhibit different property from those of the free complexes, which can arise from distortions caused by steric effects due to the presence of sodium cations, or from interactions with the zeolite matrix.  相似文献   

7.
Reaction of Ni(OAc)2 with the symmetric `end-off' compartmental proligand 2,6-[N,N-bis(2-hydroxy-phenylmethyl)-N,N-bis(2-pyridylmethyl)aminomethyl]-4-methylphenol (H3L) in the presence of NaPF6 has been found to generate a homotetranuclear nickel(II) complex [(Ni4HL)(L)(OAc)2(H2O)2(HOAc)2]PF6. The crystal structure of the complex reveals that the complex is donor asymmetric and that the extended supra-ligand periphery is maintained by a tight hydrogen-bond between two pendant phenol/phenoxy groups of adjacent ligands and by further tight hydrogen-bonds between coordinated acetic acid molecules and the remaining pendant phenols of the ligand, generating a double acid salt of the type [CH3COO?H?LH?L?H?OOCCH3]5−. Reaction of H3L with Ni(OAc)2 and NaClO4 in methanol gave the complex [Ni2(HL)(OAc)2(OH2)2][ClO4]. The structure was determined by X-ray diffraction and showed that the complex exists as a dimer promoted by intermolecular hydrogen-bonding.  相似文献   

8.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

9.
1H NMR spectroscopy was applied to study the reactions of cis-[Pd(L)(H2O)2]2+ complexes (L is en, pic and dpa) with the N-acetylated tripeptides L-methionylglycylglycine, MeCOMet–Gly–Gly, and glycyl–L-methionyl–glycine, MeCOGly–Met–Gly. All reactions were performed in the pH range 2.0–2.5 with equimolar amounts of the cis-[Pd(L)(H2O)2]2+ complex and the tripeptide at 60 °C. The hydrolytic reactions of the cis-[Pd(en)(H2O)2]2+, cis-[Pd(pic)(H2O)2]2+ and cis-[Pd(dpa)(H2O)2]2+ complexes with MeCOMet–Gly–Gly were regioselective and only the amide bond involving the carboxylic group of methionine was cleaved. However, in the reactions of these three Pd(II) complexes with MeCOGly–Met–Gly, two amide bonds, Met–Gly and MeCO–Gly, were cleaved. From UV–Vis spectrophotometry studies, it was found that the rate-determining step of these hydrolytic reactions is the monodentate coordination of the corresponding Pd(II) complex to the sulfur atom of the methionine side chain. The rate of the cleavage of these amide bonds is dependent on the nature of the bidentate coordinated diamine ligand L (en > pic > dpa). The hydrolytic reaction of cis-[Pd(L)(H2O)2]2+-type complexes with MeCOMet–Gly–Gly, containing the methionine side chain in the terminal position of the peptide, is regioselective while in the reaction of these Pd(II) complexes with MeCOGly–Met–Gly, none selective cleavage of the peptide occurs. This study contributes to a better understanding of the selective cleavage of methionine-containing peptides employing palladium(II) complexes as catalysts.  相似文献   

10.
Two Ni(II) complexes of the dianionic ligands, Mebpb2−, [H2Mebpb = N,N′-bis(pyridine-2-carboxamido)-4-methylbenzene] and Mebqb2−, [H2Mebqb = N,N′-bis(quinoline-2-carboxamido)-4-methylbenzene] have been synthesized and characterized by elemental analyses, IR, and UV-Vis spectroscopy. The crystal and molecular structures of [Ni(Mebpb)], (1), and [Ni(Mebqb)], (2), were determined by X-ray crystallography. Both complexes exhibit distorted square-planar NiN4 coordination figures with two short and two long Ni-N bonds (Ni-N ∼1.84 and ∼1.95 Å, respectively). The electrochemical behavior of these complexes with the goal of evaluating the structural effects on the redox properties has been studied.  相似文献   

11.
The reaction of [Ni(pftp)] [pftp = N,N-propane-1,3-diyl-(6-formyl-4-methyliminatothiophenolato)] with hydroxylamine hydrochloride in the presence potassium acetate in MeOH resulted in the formation of the complex [Ni(LH2)] [L = N,N-propane-1,3-diyl-(4-methyl-2-methyliminato-6-methyloxime-thiophenolato)] in good yield. A single crystal X-ray diffraction structural determination showed a mononuclear nickel(II) complex with the new acyclic ligand LH2 that had been functionalised with two oxime groups containing an empty N(oxime)2S2 pocket to which another metal ion could be added. A further reaction of [Ni(LH2)] with NiCl2·6H2O, triethylamine and ammonium hexafluorophosphate in MeOH gave a dark red product that yielded red crystals of [Ni2(LH)]PF6·DMF via slow recrystallisation from a DMF/PriOH solvent mixture. A single crystal X-ray diffraction study of these crystals confirmed the presence of a dinuclear nickel(II) complex linked by a dithiolato-bridge. Both nickel(II) ions exhibited square-planar geometry where the metal centres are coordinated in two distinct cis-S2N(imine)2 and cis-S2N(oxime)2 binding sites provided by the new dicompartmental oxime/thiolate-containing ligand LH.  相似文献   

12.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

13.
A great number of important chemical reactions that occur in the environment are microbially mediated. In order to understand the kinetics of these reactions it is necessary to develop methods to directly measure in situ reaction rates and to develop models to help elucidate the mechanisms of microbial catalysis. The oxidation of Mn(II) in a zone above the O2/H2S interface in Saanich Inlet, B.C., Canada is one such reaction. We present here a method by which in situ rates of microbial Mn(II) oxidation are measured and a model based on our experimental results to describe the general mechanism of Mn(H) oxidation. We propose a two step process in which Mn(II) is first bound by a site on the bacterial surface and then oxidized. The model is analogous to the Langmuir isotherm model for surface catalyzed gas reactions or the Michaelis-Menten model for enzyme kinetics. In situ Mn(II) oxidation rates were measured during five cruises to Saanich Inlet during the summers of 1983 and 1984. We use the model to calculate the apparent equilibrium binding constant (Ks 0.18 M), the apparent half saturation constant for biological Mn(H) oxidation (Km = 0.22 to 0.89 M), the maximum rate of Mn(II) oxidation (Vmax = 3.5 to 12.1 nM·h-1) and the total microbial surface binding site concentration ( E 51 nM). Vmax for Mn(II) oxidation agrees with the rates calculated from the value of the flux of Mn(II) to the oxidizing zone using the Mn(II) gradient and estimates of the eddy diffusion coefficient. This consistancy verifies our methodology and indicates that the rate of Mn(II) oxidation is nearly equal to the (Vmax for the reaction. We conclude that in this environment the Mn(II) oxidation rate is more a function of the total number of surface binding sites than the Mn(H) concentration.Contribution #1601 from the School of Oceanography, Univ. of Washingtoncorresponding author  相似文献   

14.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   

15.
2-[Bis(ethoxyethyl)phosphino]phenol P1-OH reacts in basic refluxing solvents with ReOCl3(PPh3)2, in a 2/1 molar ratio, to give the green ReOCl(P1-O)2 complex. Structure elucidation by 31P NMR is consistent with a cis-PP “twisted” octahedral complex, which is the preferred conformation on electronic grounds. The complex is unique in toluene while several species were present in ethanol. When the reaction is performed with Re(NPh)Cl3(PPh3)2, a mixture of trans-PP (major) and cis-PP(minor) species in a 3/1 ratio is obtained. These geometric isomers were distinguished by their 2JPP coupling constants. Only cis-PP-Re(NPh)Cl(P1-O)2, less soluble, could be isolated and its molecular structure determined by physicochemical measurements. This is the first example of cis-PP phosphinophenolato complex with the [ReNPh]3+ core, thus illustrating the importance of the steric demand of the phosphine substituent. Reaction of P1-OH with NiCl2 gives Ni(P1-O)2 as an orange oily solid with a cis-PP square planar structure. This structure is the most probable based on the 31P, 13C NMR data.  相似文献   

16.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

17.
Oxidation of vanadyl sulfate by H2O2 involves multiple reactions at neutral pH conditions. The primary reaction was found to be oxidation of V(IV) to V(V) using 0.5 equivalent of H2O2, based on the loss of blue color and the visible spectrum. The loss of V(IV) and formation V(V) compounds were confirmed by ESR and51V-NMR spectra, respectively. In the presence of excess H2O2 (more than two equivalents), the V(V) was converted into diperoxovanadate, the major end-product of these reactions, identified by changes in absorbance in ultraviolet region and by the specific chemical shift in NMR spectrum. The stoichiometric studies on the H2O2 consumed in this reaction support the occurrence of reactions of two-electron oxidation followed by complexing two molecules of H2O2. Addition of a variety of compounds—Tris, ethanol, mannitol, benzoate, formate (hydroxyl radical quenching), histidine, imidazole (singlet oxygen quenching), and citrate—stimulated a secondary reaction of oxygen-consumption that also used V(IV) as the reducing source. This reaction requires concomitant oxidation of vanadyl by H2O2, favoured at low H2O2:V(IV) ratio. Another secondary reaction of oxygen release was found to occur during vanadyl oxidation by H2O2 in acidic medium in which the end-product was not diperoxovanadate but appears to be a mixture of VO 3 + (–546 ppm), VO3+ (–531 ppm) and VO 2 + (–512 ppm), as shown by the51V-NMR spectrum. This reaction also occurred in phosphate-buffered medium but only on second addition of vanadyl. The compounds that stimulated the oxygen-consumption reaction were found to inhibit the oxygen-release reaction. A combination of these reactions occur depending on the proportion of the reactants (vanadyl and H2O2), the pH of the medium and the presence of some compounds that affect the secondary reactions.  相似文献   

18.
This study has analyzed the role of several serum constituents, that have been proposed to effect the following reactionin situ: {fx1-1} {fx1-2} These reactions were monitored by measuring the rate of Fe(II) oxidation in the presence of apo-transferrin (reaction A) and Fe(III)-transferrin formation (reaction B) at 465 nm. Reactions A and B were found to be kinetically equivalent. The results show that, singly or in combination, bicarbonate, orthophosphate, citrate, apo-transferrin, and/or albumin have less than one-tenth of the ability to enhance the oxidation of Fe(II) compared to the serum enzyme, ceruloplasmin. It was also found that the rate of Fe(II) oxidation by serum Fe-ligands was influenced by the efficiency of oxygen utilization. Whereas ceruloplasmin produces a 4∶1 ratio of Fe(II) oxidized to oxygen utilized, the non-enzymic components yield a 2∶1 or 3.09∶1 ratio. These data support the role of ceruloplasmin as an antioxidant that prevents the formation of the intermediate active oxygen species O 2 · and H2O 2 · through the Fe(II) auto-oxidation reaction. A hitherto unrecognized factor in the control of nonenzymic oxidation of Fe(II) was serum albumin. This protein, at >25 μM, was found to sharply dampen the rate of Fe(II) oxidation in the presence of a physiological concentration of bicarbonate, citrate, and transferrin Albumin did not appear to affect the ceruloplasmin catalyzed oxidation of Fe(II) at pH 7.0. The addition of ceruloplasmin effected up to a 44 × increase in the rate of Fe(II) oxidation and Fe(III)-transferrin formation even in the presence of 0.60 mM albumin.  相似文献   

19.
The formation of Cd(II) and Co(II) complexes with N-methylethylenediamine (men) has been studied at 298 K in dimethylsulfoxide (dmso) in an ionic medium set to 0.1 mol dm−3 with Et4NClO4 in anaerobic conditions by means of potentiometric, UV-Vis, calorimetric and FT-IR technique. Mononuclear MLj (M=Cd, Co; j=1-3) complexes are formed in exothermic reactions, whereas the entropy changes oppose the complexes formation. The results are discussed in terms of different basicities and steric requirements and the whole of the thermodynamic data reported till now for the two ions with a number of diamines are summarized to visualize the selectivity of the ligands. The dioxygen uptake of Co(men)2 species has also been studied by means of UV-Vis and EPR techniques. The kinetic parameters and stability constants obtained for the formation of the superoxo and μ-peroxo species are discussed in terms of solvent effect and steric hindrance due to methyl group.Cyclic voltammetry was used to confirm the stability constant for the Co(dmen)2 (dmen=N,N-dimethylethylenediamine) superoxo adduct formation but was not successful to investigate this Co(men)2-O2 system.  相似文献   

20.
The oligomerization of [CuII(Hx(tmdnTAA))]x+ (x = 0, 1, 2 and (tmdnTAA))2− is 2,4,9,11-tetramethyl-dinaphto[14]-2,4,6,9,11,13-hexaeneN4) was initiated in homogeneous solution via the reaction of this Cu(II) complex with pulse radiolytically generated radicals. The reaction produces Cu(III) intermediates which are rapidly converted to Cu(II) ligand-radical species. In contrast to the mechanism proposed for the electrochemical oligomerization, where the local concentration of radicals is probably high, the reaction kinetics in homogeneous solution is propagated by a process where the Cu(II) ligand-radical precursors react with [CuII(Hx(tmdnTAA))]x+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号