首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.  相似文献   

2.
Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL.  相似文献   

3.
4.
5.
O-Glucosylation of epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch is essential for Notch function. O-Glucose can be elongated by xylose to the trisaccharide, Xylα1–3Xylα1–3Glcβ1-O-Ser, whose synthesis is catalyzed by the consecutive action of three glycosyltransferases. A UDP-glucose:protein O-glucosyltransferase (Poglut/Rumi) transfers O-glucose to serine within the O-glucose consensus. Subsequently, either of two UDP-xylose:glucoside xylosyltransferases (Gxylt1 or Gxylt2) transfers xylose to O-glucose. Finally, a UDP-xylose:xyloside xylosyltransferase (Xxylt1) transfers xylose to Xylα1–3Glcβ1-O-EGF. Our prior site-mapping studies demonstrated that O-glucose consensus sites are modified at high but variable stoichiometries in mouse Notch1 and identified a novel glycosylation site with alanine in place of proline, suggesting a revised, broader consensus sequence (CXSX(P/A)C). Here we examined the molecular basis for this site specificity. A panel of EGF repeats from human coagulation factor 9 (FA9), mouse Notch1, and Notch2 were bacterially expressed and purified by reverse phase HPLC for use in in vitro enzyme assays. We demonstrate that proper folding of EGF repeats is essential for glycosylation by Poglut/Rumi, that alanine can substitute for proline in the context of coagulation factor 9 EGF repeat for O-glucose transfer, confirming the new consensus sequence, and that positively charged residues within the O-glucose consensus sequence reduce efficiency of glycosylation by Poglut/Rumi. Moreover, proper folding of EGF repeats is also important for the activities of Gxylt1, Gxylt2, and Xxylt1. These results indicate that protein folding and amino acid sequences of individual EGF repeats fundamentally affect both attachment and elongation of O-glucose glycans.  相似文献   

6.
Notch is required for many aspects of cell fate specification and morphogenesis during development, including neurogenesis and axon guidance. We here provide genetic and biochemical evidence that Notch directs axon growth and guidance in Drosophila via a “non-canonical”, i.e. non-Su(H)-mediated, signaling pathway, characterized by association with the adaptor protein, Disabled, and Trio, an accessory factor of the Abl tyrosine kinase. We find that forms of Notch lacking the binding sites for its canonical effector, Su(H), are nearly inactive for the cell fate function of the receptor, but largely or fully active in axon patterning. Conversely, deletion from Notch of the binding site for Disabled impairs its action in axon patterning without disturbing cell fate control. Finally, we show by co-immunoprecipitation that Notch protein is physically associated in vivo with both Disabled and Trio. Together, these data provide evidence for an alternate Notch signaling pathway that mediates a postmitotic, morphogenetic function of the receptor.  相似文献   

7.
8.
9.
Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.  相似文献   

10.
11.
The release of Notch intracellular domain (NICD) is mediated by γ-secretase. γ-Secretase inhibitors have been shown to be potent inhibitors of NICD. We hypothesized that Notch1 is acting as an oncogene in ovarian cancer and that inhibition of Notch1 would lead to inhibition of cell growth and apoptotic cell death in ovarian cancer cells. In this study, expressions of Notch1 and hes1 in four human ovarian cancer (A2780, SKOV3, HO-8910, and HO-8910PM), and one ovarian surface (IOSE 144) cell lines were detected by Western blot and quantitative real-time RT-PCR. The effects of γ-secretase inhibition (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) were measured by MTT assay, flow cytometry, ELISA and colony-forming assay. Our results showed that Notch1 and hes1 were found in all the four human ovarian cancer and IOSE 144 cell lines, and they were significantly higher in ovarian cancer cells A2780 compared to another four ovarian cells. Down-regulation of Notch1 expression by DAPT was able to substantially inhibit cell growth, induce G1 cell cycle arrest and induce cell apoptosis in A2780 in dose- and time-dependent manner. In addition, hes1 was found to be down-regulated in dose- and time-dependent manner by DAPT in A2780. These results demonstrate that treatment with DAPT leads to growth inhibition and apoptosis of A2780 cells in dose- and time-dependent manner. These findings also support the conclusion that blocking of the Notch1 activity by γ-secretase inhibitors represents a potentially attractive strategy of targeted therapy for ovarian cancer.  相似文献   

12.
YTH domain family 2 (YTHDF2) is an N6-methyladenosine (m6A) binding protein promoting mRNA degradation in various biological processes. Despite its essential roles, the role of YTHDF2 in determining cell fates has not been fully elucidated. Notch signaling plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. We investigated the effect of YTHDF2 on Notch signaling. Our results show that YTHDF2 inhibits Notch signaling by downregulating the Notch1, HES1, and HES5 mRNA levels. Analyzing YTHDF2 deletion mutants indicates that the YTH domain is critical in regulating the Notch signal by directly binding m6A of Notch1 mRNA. Recently, YTHDF2 nuclear translocation was reported under heat shock conditions, but its physiological function is unknown. In our study, the YTH domain is required for YTHDF2 nuclear translocation. In addition, under heat shock stress, the Notch signal was significantly restored due to the increased expression of the Notch1 targets. These results suggest that YTHDF2 in the cytoplasm may act as an intrinsic suppressor in Notch signaling by promoting Notch1 mRNA degradation under normal cellular conditions. Conversely, upon the extracellular stress such as heat shock, YTHDF2 nuclear translocation resulting in reduced Notch1 mRNA decay may contribute to the increasing of Notch intracellular domain (NICD) regulating the survival-related target genes.  相似文献   

13.
14.
UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits.  相似文献   

15.
16.
Accumulating data suggest the existence of a link between hypoxia and maintenance of the undifferentiated cell state, but little is known about the cellular signaling mechanisms underlying this process. Recent reports reveal a direct link between components of the hypoxia signaling pathway and Notch pathway in maintaining precursor cells in an undifferentiated state. Here, we report that in the developing mouse pancreas, Hif2-α is expressed in pancreatic progenitor cells, but its expression is lost in committed endocrine progenitors as well as in differentiated endocrine and exocrine cells. In an attempt to analyze the function of HIF2-α in the developing pancreas, we studied Hif2-α−/− pancreas. Our analyses revealed that in addition to the decreased size and branching, the Hif2-α deficient pancreas also displayed impaired notch signaling and cell differentiation. Finally, we found that HIF2-α binds directly to Notch-IC and that the responsible site for this interaction is within the RAM domain of Notch protein. These results suggest that HIF2-α is required for normal mouse pancreatic development.  相似文献   

17.
We previously determined that Notch2, and not Notch1, was required for forming proximal nephron segments. The dominance of Notch2 may be conserved in humans, since Notch2 mutations occur in Alagille syndrome (ALGS) 2 patients, which includes renal complications. To test whether mutations in Notch1 could increase the severity of renal complications in ALGS, we inactivated conditional Notch1 and Notch2 alleles in mice using a Six2-GFP::Cre. This BAC transgene is expressed mosaically in renal epithelial progenitors but uniformly in cells exiting the progenitor pool to undergo mesenchymal-to-epithelial transition. Although delaying Notch2 inactivation had a marginal effect on nephron numbers, it created a sensitized background in which the inactivation of Notch1 severely compromised nephron formation, function, and survival. These and additional observations indicate that Notch1 in concert with Notch2 contributes to the morphogenesis of renal vesicles into S-shaped bodies in a RBP-J-dependent manner. A significant implication is that elevating Notch1 activity could improve renal functions in ALGS2 patients. As proof of principle, we determined that conditional inactivation of Mint, an inhibitor of Notch-RBP-J interaction, resulted in a moderate rescue of Notch2 null kidneys, implying that temporal blockage of Notch signaling inhibitors downstream of receptor activation may have therapeutic benefits for ALGS patients.  相似文献   

18.
19.
Notch signaling is essential for cell-fate specification in metazoans, and dysregulation of the pathway leads to a variety of human diseases including heart and vascular defects as well as cancer. Glycosylation of the Notch extracellular domain has emerged as an elegant means for regulating Notch activity, especially since the discovery that Fringe is a glycosyltransferase that modifies O-fucose in 2000. Since then, several other O-glycans on the extracellular domain have been demonstrated to modulate Notch activity. Here we will describe recent results on the molecular mechanisms by which Fringe modulates Notch activity, summarize recent work on how O-glucose, O-GlcNAc, and O-GalNAc glycans affect Notch, and discuss several human genetic disorders resulting from defects in Notch glycosylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号