首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signal transduction proteins are organized into sensor (input) domains that perceive a signal and, in response, regulate the biological activity of effector (output) domains. We reprogrammed the input signal specificity of a normally oxygen-sensitive, light-inert histidine kinase by replacing its chemosensor domain by a light-oxygen-voltage photosensor domain. Illumination of the resultant fusion kinase YF1 reduced net kinase activity by ∼ 1000-fold in vitro. YF1 also controls gene expression in a light-dependent manner in vivo. Signals are transmitted from the light-oxygen-voltage sensor domain to the histidine kinase domain via a 40°-60° rotational movement within an α-helical coiled-coil linker; light is acting as a rotary switch. These signaling principles are broadly applicable to domains linked by α-helices and to chemo- and photosensors. Conserved sequence motifs guide the rational design of light-regulated variants of histidine kinases and other proteins.  相似文献   

2.
《Journal of molecular biology》2019,431(23):4547-4558
A complex relationship exists between environmental factors, signaling networks and phenotypic individuality in bacteria. In this review, we will focus on the organization, function and control points of multiple-input histidine kinase-based signaling cascades as a source of phenotypic heterogeneity. In particular, we will examine the quorum sensing cascade in Vibrio harveyi and the pyruvate sensor network in Escherichia coli. We will describe and compare these histidine kinase-based signaling networks in terms of robustness, the molecular mechanisms of signal transduction and the role of RNA switches. Finally, we will discuss the biological significance of phenotypic heterogeneity for the respective bacteria in relation to environmental factors.  相似文献   

3.
双组分系统由感受信号输入的组氨酸(His) 蛋白激酶和调节信号输出的反应调控因子组成,涉及许多原核生物、真菌、黏菌和植物的各种信号转导途径。在植物中,还存在更复杂的包括杂合的His激酶、磷酸传递中间体和反应调控因子的信号系统,称为多步骤双组分系统。最近的研究表明,双组分系统在对环境刺激和生长调节剂(如乙烯、细胞分裂素、光和渗透胁迫)的反应中起重要作用。  相似文献   

4.
双组分系统由感受信号输入的组氨酸(His)蛋白激酶和调节信号输出的反应调控因子组成,涉及许多原核生物、真菌、黏菌和植物的各种信号转导途径.在植物中,还存在更复杂的包括杂合的His激酶、磷酸传递中间体和反应调控因子的信号系统,称为多步骤双组分系统.最近的研究表明,双组分系统在对环境刺激和生长调节剂(如乙烯、细胞分裂素、光和渗透胁迫)的反应中起重要作用.  相似文献   

5.
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.  相似文献   

6.
7.
Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations – a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme''s phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness – consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase''s phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but may apply more generally to bifunctional enzyme systems.  相似文献   

8.
9.
蛋白激酶与植物逆境信号传递途径   总被引:14,自引:0,他引:14  
蛋白质的可逆磷酸化是细胞信号识别与转导的重要环节,蛋白激酶主要催化蛋白质的磷酸化作用,植物中已发现并分离了大量蛋白激酶及其基因,它们介导了植物激素和胞外环境信号等引起的多种生理生化反应。文章着重介绍分裂原激活蛋白激酶(MAPK)、钙依赖而钙调素不依赖的蛋白激酶(CDPK)、受体蛋白激酶(RPK)、核糖体蛋白激酶和转录调控蛋白激酶等多种蛋白激酶在植物逆境信号识别与转导中的作用。  相似文献   

10.
Previous studies have demonstrated that double phosphorylation of a protein can lead to bistability if some conditions are fulfilled. It was also shown that the signaling behavior of a covalent modification cycle can be quantitatively and, more importantly, qualitatively modified when this cycle is coupled to a signaling pathway as opposed to being isolated. This property was named retroactivity. These two results are studied together in this paper showing the existence of interesting phenomena—oscillations and bistability—in signaling cascades possessing at least one stage with a double-phosphorylation cycle as in MAPK cascades.  相似文献   

11.
Two-component systems (TCSs) aid bacteria in adapting to a wide variety of stress conditions. While the role of TCS response regulators in the cold tolerance of the psychrotrophic foodborne pathogen Listeria monocytogenes has been demonstrated previously, no comprehensive studies showing the role of TCS histidine kinases of L. monocytogenes at low temperature have been performed. We compared the expression levels of each histidine kinase-encoding gene of L. monocytogenes EGD-e in logarithmic growth phase at 3°C and 37°C, as well as the expression levels 30 min, 3 h, and 7 h after cold shock at 5°C and preceding cold shock (at 37°C). We constructed a deletion mutation in each TCS histidine kinase gene, monitored the growth of the EGD-e wild-type and mutant strains at 3°C and 37°C, and measured the minimum growth temperature of each strain. Two genes, yycG and lisK, proved significant in regard to induced relative expression levels under cold conditions and cold-sensitive mutant phenotypes. Moreover, the ΔresE mutant showed a lower growth rate than that of wild-type EGD-e at 3°C. Eleven other genes showed upregulated gene expression but revealed no cold-sensitive phenotypes. The results show that the histidine kinases encoded by yycG and lisK are important for the growth and adaptation of L. monocytogenes EGD-e at low temperature.  相似文献   

12.
13.
Bistability is a nonlinear phenomenon widely observed in nature including in biochemical reaction networks. Deterministic chemical kinetics studied in the past has shown that bistability occurs in systems with strong (cubic) nonlinearity. For certain mesoscopic, weakly nonlinear (quadratic) biochemical reaction systems in a small volume, however, stochasticity can induce bistability and bifurcation that have no macroscopic counterpart. We report the simplest yet known reactions involving driven phosphorylation-dephosphorylation cycle kinetics with autocatalytic kinase. We show that the noise-induced phenomenon is correlated with free energy dissipation and thus conforms with the open-chemical system theory. A previous reported noise-induced bistability in futile cycles is found to have originated from the kinase synchronization in a bistable system with slow transitions, as reported here.  相似文献   

14.
15.
Prokaryotes and lower eukaryotes, such as yeasts, utilize two-component signal transduction pathways to adapt cells to environmental stress and to regulate the expression of genes associated with virulence. One of the central proteins in this type of signaling mechanism is the phosphohistidine intermediate protein Ypd1. Ypd1 is reported to be essential for viability in the model yeast Saccharomyces cerevisiae. We present data here showing that this is not the case for Candida albicans. Disruption of YPD1 causes cells to flocculate and filament constitutively under conditions that favor growth in yeast form. To determine the function of Ypd1 in the Hog1 mitogen-activated protein kinase (MAPK) pathway, we measured phosphorylation of Hog1 MAPK in ypd1Δ/Δ and wild-type strains of C. albicans. Constitutive phosphorylation of Hog1 was observed in the ypd1Δ/Δ strain compared to the wild-type strain. Furthermore, fluorescence microscopy revealed that green fluorescent protein (GFP)-tagged Ypd1 is localized to both the nucleus and the cytoplasm. The subcellular segregation of GFP-tagged Ypd1 hints at an important role(s) of Ypd1 in regulation of Ssk1 (cytosolic) and Skn7 (nuclear) response regulator proteins via phosphorylation in C. albicans. Overall, our findings have profound implications for a mechanistic understanding of two-component signaling pathways in C. albicans, and perhaps in other pathogenic fungi.  相似文献   

16.
17.
18.
Microorganisms use multiple two-component sensory systems to detect changes in their environment and elicit physiological responses. Despite their wide spread and importance, the intracellular organization of two-component sensory proteins in bacteria remains little investigated. A notable exception is the well-studied clustering of the chemoreceptor-kinase complexes that mediate chemotaxis behaviour. However, these chemosensory complexes differ fundamentally from other systems, both structurally and functionally. Therefore, studying the organization of typical sensory kinases in bacteria is essential for understanding the general role of receptor clustering in bacterial sensory signalling. Here, by studying mYFP-tagged sensory kinases in Escherichia coli, we show that the tagged TorS and EvgS sensors have a clear tendency for self-association and clustering. These sensors clustered even when expressed at a level of a few hundred copies per cell. Moreover, the mYFP-tagged response regulator TorR showed clear TorS-dependent clustering, indicating that untagged TorS sensors also tend to form clusters. We also provide evidence for the functionality of these tagged sensors. Experiments with truncated TorS or EvgS proteins suggested that clustering of EvgS sensors depends on the cytoplasmic part of the protein, whereas clustering of TorS sensors can be potentially mediated by the periplasmic/transmembrane domain. Overall, these findings support the notion that sensor clustering plays a role in bacterial sensory signalling beyond chemotaxis.  相似文献   

19.
Abstract

Bacteria process and transmit signals simultaneously through several two-component/phos-phorelay networks using closely related proteins. Therefore discrimination against mismatches and discrete recognition between protein partners is an absolute requirement for producing the correct responses. We tried to address this issue by comparing and analyzing sequences from the helix-bundle regions of histidine kinases of Bacillus subtilis. Our analysis shows how conservation and variability in the sequences give rise to selective association and unique recognition. The observed pattern suggests that the chances for cross talk between non-partner proteins are extremely low, but cross talk could take place in special cases.  相似文献   

20.
Signaling networks have evolved to transduce external and internal information into critical cellular decisions such as growth, differentiation, and apoptosis. These networks form highly interconnected systems within cells due to network crosstalk, where an enzyme from one canonical pathway acts on targets from other pathways. It is currently unclear what types of effects these interconnections can have on the response of networks to incoming signals. In this work, we employ mathematical models to characterize the influence that multiple substrates have on one another. These models build off of the atomistic motif of a kinase/phosphatase pair acting on a single substrate. We find that the ultrasensitive, switch-like response these motifs can exhibit becomes transitive: if one substrate saturates the enzymes and responds ultrasensitively, then all substrates will do so regardless of their degree of saturation. We also demonstrate that the phosphatases themselves can induce crosstalk even when the kinases are independent. These findings have strong implications for how we understand and classify crosstalk, as well as for the rational development of kinase inhibitors aimed at pharmaceutically modulating network behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号