首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bone, mineralization is tightly regulated by osteoblasts and hypertrophic chondrocytes which release matrix vesicles (MVs) and control extracellular ionic conditions and matrix composition. MVs are the initial sites of hydroxyapatite (HA) mineral formation. Despite growing knowledge about their morphology and function, their biogenesis is not well understood. The purpose of this work was to determine the source of MVs in osteoblast lineage, Saos‐2 cells, and to check whether MVs originated from microvilli. Microvilli were isolated from the apical plasma membrane of Saos‐2 cells. Their morphology, structure, and function were compared with those of MVs. The role of actin network in MV release was investigated by using microfilament perturbing drugs. When examined by electron microscopy MVs and microvillar vesicles were found to exhibit similar morphology with trilaminar membranes and diameters in the same range. Both types of vesicles were able to induce HA formation. Their electrophoretic profiles displayed analogous enrichment in alkaline phosphatase, Na+/K+ ATPase, and annexins A2 and A6. MVs and microvillar vesicles exhibited almost the same lipid composition with a higher content of cholesterol, sphingomyelin, and phosphatidylserine as compared to plasma membrane. Finally, cytochalasin D, which inhibits actin polymerization, was found to stimulate release of MVs. Our findings were consistent with the hypothesis that MVs originated from cell microvilli and that actin filament disassembly was involved in their biogenesis. J. Cell. Biochem. 106: 127–138, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
Osteoblasts in culture can differentiate into mature mineralizing osteoblasts when stimulated with osteogenic agents. Clinical trials and in vivo animal studies suggest that specific polyunsaturated fatty acids (PUFAs) may benefit bone health. The aim of this study was to investigate whether arachidonic acid (AA) and docosahexaenoic acid (DHA) affect osteogenesis in osteoblasts and the transdifferentiation into adipocytes. Results from this study show that long‐term exposure to AA inhibited alkaline phosphatase (ALP) activity in these cells, which might be prostaglandin E2 (PGE2)‐mediated. DHA exposure also inhibited ALP activity which was evident after both short‐ and long‐term exposures. The mechanism whereby DHA inhibits ALP activity is not clear and needs to be investigated. Although long‐term exposure to PUFAs inhibited ALP activity, the mineralizing properties of these cells were not compromised. Furthermore, PUFA exposure did not induce adipocyte‐like features in these cells as evidenced by the lack of cytoplasmic triacylglycerol accummulation. More research is required to elucidate the cellular mechanisms of action of PUFAs on bone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
ATP激活鼻咽癌细胞氯电流并减小细胞容积   总被引:1,自引:0,他引:1  
He QF  Wang LW  Mao JW  Sun XR  Li P  Zhong P  Nie SH  Jacob T  Chen LX 《生理学报》2004,56(6):691-696
采用全细胞膜片钳技术和细胞容积测量技术,在低分化鼻咽癌细胞株CNE-2Z上观察ATP 诱导的Cl- 电流的特性及其对细胞容积的影响。细胞外微摩尔水平的ATP 以剂量依赖性的方式激活一个具有弱外向整流特性,没有时间依赖性失活的电流,此电流的反转电位 [(-0.05 ± 0.03) mV]接近Cl- 的平衡电位(-0.9 mV)。用葡萄糖酸置换细胞外液Cl- 后, ATP 激活的电流明显减小并且反转电位发生改变。氯通道抑制剂NPPB (200 μmol/L)可以抑制这一电流 [(81.03 ± 9.3)%] 。此电流亦可被嘌呤受体(P2Y) 拮抗剂反应蓝 2 抑制 [(67.39 ± 5.06)%]。50 μmol/L 的 ATP 使在等渗状态下的细胞容积缩小, 替代和耗竭细胞外、内的Cl- 后, ATP 的这一作用消失。这些结果提示细胞外微摩尔水平的 ATP 可通过兴奋 P2Y 受体激活氯通道而产生与细胞容积调节相关的Cl- 电流。  相似文献   

5.
Pulsed electromagnetic fields (PEMFs) have been shown to be a noninvasive physical stimulant for bone fracture healing. However, PEMF stimulation requires a relatively long period of time and its mechanism of action has not yet been fully clarified. Recently, the mammalian target of rapamycin (mTOR) pathway has been shown to be involved in bone formation. This study aimed to investigate the effects of PEMFs on osteoblastic MC3T3‐E1 cells by examining various cellular responses including changes in the mTOR pathway. Continuous PEMF stimulation induced a transient phosphorylation of the mTOR pathway, whereas intermittent PEMF stimulation (1 cycle of 10 min stimulation followed by 20 min of stimulation pause) revitalized the reduced phosphorylation. Moreover, PEMF stimulation stimulated cell proliferation (bromodeoxyuridine incorporation) rather than differentiation (alkaline phosphatase activity), with a more notable effect in the intermittently stimulated cells. These results suggest that intermittent PEMF stimulation may be effective in promoting bone fracture healing by accelerating cell proliferation, and in shortening stimulation time. Bioelectromagnetics. 2019;40:412–421. © 2019 Bioelectromagnetics Society.  相似文献   

6.
7.
目的:观察硫化氢(H2S)供体硫氢化钠(NaHS)对ATP致伤的大鼠小胶质细胞细胞活力、细胞膜通透性及P2X7受体表达的影响。方法:实验取对数期形态结构及生长分化良好的大鼠小胶质细胞,随机分4组,每组设3个复孔。①正常对照组:常规培养,不进行ATP处理。②ATP组:接种细胞24 h后ATP处理。③NaHS+ATP组:NaHS预先孵育30 min后再用ATP处理,并且NaHS始终存在于反应体系中。④KN-62(P2X7受体阻断剂)+ATP组:KN-62预先孵育30 min,其余同NaHS+ATP组。MTT检测各组细胞活力,荧光染料YO-PRO-1检测各组相对荧光单位(RFU)反映膜的通透性,Western blot检测各组P2X7受体表达水平。结果:①与对照组相比,不同浓度的ATP (1、3、5、10 mmol/L)作用3 h均可明显降低大鼠小胶质细胞活力,NaHS (200 μmol/L)干预后大鼠小胶质细胞活力较ATP组明显增加(P<0.01),但NaHS达400 μmol/L浓度时,其保护作用未进一步增加。②随着ATP浓度的增加,大鼠小胶质细胞内YO-PRO-1的荧光强度显著增加,NaHS预处理可明显减少细胞对YO-PRO-1的摄取(P<0.01)。③ATP (3 mmol/L)能上调P2X7受体蛋白表达水平,而NaHS (200 μmol/L)预孵育则可明显抑制ATP引起的P2X7受体蛋白表达的上调(P<0.01)。结论:NaHS可减少ATP致伤的大鼠小胶质细胞的P2X7受体表达、降低通透性、增加细胞活力,提示调控P2X7受体的表达和功能可能是H2S神经保护作用的重要环节。  相似文献   

8.
9.
The extension of microglial processes toward injured sites in the brain is triggered by the stimulation of the purinergic receptor P2Y(12) by extracellular ATP. We recently showed that P2Y(12) stimulation by ATP induces microglial process extension in collagen gels. In the present study, we found that a P2Y(12) agonist, 2-methylthio-ADP (2MeSADP), failed to induce the process extension of microglia in collagen gels and that co-stimulation with adenosine, a phosphohydrolytic derivative of ATP, and 2MeSADP restored the chemotactic process extension. An adenosine A3 receptor (A3R)-selective agonist restored the chemotactic process extension, but other receptor subtype agonists did not. The removal of adenosine by adenosine deaminase and the blocking of A3R by an A3R-selective antagonist inhibited ADP-induced process extension. The A3R antagonist inhibited ADP-induced microglial migration, and an A3R agonist promoted 2MeSADP-stimulated migration. ADP and the A3R agonist activated Jun N-terminal kinase in microglia, and a Jun N-terminal kinase inhibitor inhibited the ADP-induced process extension. An RT-PCR analysis showed that A1R and A3R were expressed by microglia sorted from adult rat brains and that the A2AR expression level was very low. These results suggested that A3R signaling may be involved in the ADP-induced process extension and migration of microglia.  相似文献   

10.
Human embryonic stem cells (hESCs) can self‐renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three‐stage protocol. In our study, 0.1 μM E2 were applied to hESCs‐derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up‐regulated the expression of insulin‐like growth factors (IGF)‐1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC‐derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron‐secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2‐caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)β but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2‐improved hNPC and hDA neuron differentiation through cross‐talk between IGF‐1 and ERβ in vitro.  相似文献   

11.
Prostaglandin E2 (PGE2) is a key mediator of inflammation and contributes to pain hypersensitivity by promoting sensory neurons hyperexcitability. PGE2 synthesis results from activation of a multi‐step enzymatic cascade that includes cyclooxygenases (COXs), the main targets of non‐steroidal anti‐inflammatory drugs (NSAIDs). Although NSAIDs are widely prescribed to reduce inflammatory symptoms such as swelling and pain, associated harmful side effects restrict their long‐term use. Therefore, finding new drugs that limit PG production represents an important therapeutic issue. In response to peripheral inflammatory challenges, mice lacking the ATP‐gated P2X4 channel (P2X4R) do not develop pain hypersensitivity and show a complete absence of inflammatory PGE2 in tissue exudates. In resting conditions, tissue‐resident macrophages constitutively express P2X4R. Stimulating P2X4R in macrophages triggers calcium influx and p38 MAPK phosphorylation, resulting in cytosolic PLA2 (cPLA2) activation and COX‐dependent release of PGE2. In naive animals, pain hypersensitivity was elicited by transfer into the paw of ATP‐primed macrophages from wild type, but not P2X4R‐deficient mice. Thus, P2X4Rs are specifically involved in inflammatory‐mediated PGE2 production and might therefore represent useful therapeutic targets.  相似文献   

12.
13.
14.
15.
16.
Subsequent to our identification of a novel immunoglobulin‐like cell adhesion molecule hepaCAM, we showed that hepaCAM is frequently lost in diverse human cancers and is capable of modulating cell motility and growth when re‐expressed. Very recently, a molecule identical to hepaCAM (designated as GlialCAM) was found highly expressed in glial cells of the brain. Here, we demonstrate that hepaCAM is capable of inducing differentiation of the human glioblastoma U373‐MG cells. Expression of hepaCAM resulted in a significant increase in the astrocyte differentiation marker glial fibrillary acid protein (GFAP), indicating that hepaCAM promotes glioblastoma cells to undergo differentiation. To determine the relationship between hepaCAM expression level and cell differentiation, we established two U373‐MG cell lines expressing hepaCAM at different levels. The results revealed that high‐level hepaCAM triggered a clear increase in GFAP expression as well as morphological changes characteristic of glioblastoma cell differentiation. Furthermore, high expression of hepaCAM significantly accelerated cell adhesion but inhibited cell proliferation and migration. Concomitantly, deregulation of cell cycle regulatory proteins was detected. Expectedly, the differentiation was noticeably less apparent in cells expressing low‐level hepaCAM. Taken together, our findings suggest that hepaCAM induces differentiation of the glioblastoma U373‐MG cells. The degree of cell differentiation is dependent on the expression level of hepaCAM. J. Cell. Biochem. 107: 1129–1138, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
This study comparatively investigated the effectiveness of calcium and other well‐known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose‐derived stem cells (ADSCs) into neuronal‐like cells. ADSCs were immunophenotyped and differentiated into neuron‐like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron‐specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real‐time polymerase chain reaction (quantitative real‐time polymerase chain reaction (qRT‐PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite‐like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron‐like cells and instantaneous increase in the expression of neuronal markers.  相似文献   

18.
The effect of bradykinin on prostaglandin E2 formation in cells from human trabecular bone has been studied. The cells responded to parathyroid hormone with enhanced cyclic AMP formation and were growing as cuboidal-shaped, osteoblast-like cells. In these isolated human osteoblast-like cells, bradykinin (1 mol/l) caused a rapid (5 min) stimulation of prostaglandin E2 formation. This finding indicates that human osteoblasts are equipped with receptors for bradykinin linked to an increase in prostaglandin formation.  相似文献   

19.
20.
P2X receptors are cation selective ion channels gated by the binding of extracellular ATP. Seven subtypes have been identified and they have widespread and overlapping distributions throughout the body. They form homo- and heterotrimeric complexes that differ in their functional properties and subcellular localization. They form part of larger signalling complexes, interacting with unrelated ion channels and other membrane and cytosolic proteins. Up- or down-regulation of their expression is associated with several disease states. This review aims to summarize recent work on the assembly and trafficking of this family of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号