首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Epigenetics》2013,8(2):94-100
Differential denaturation during PCR can be used to selectively amplify unmethylated DNA from a methylated DNA background. The use of differential denaturation in PCR is particularly suited to amplification of undermethylated sequences following treatment with bisulphite, since bisulphite selectively converts cytosines to uracil while methylated cytosines remain unreactive. Thus amplicons derived from unmethylated DNA retain less cytosines and their lower G + C content allows for their amplification at the lower melting temperatures, while limiting amplification of the corresponding methylated amplicons (Bisulphite Differential Denaturation PCR, BDD-PCR). Selective amplification of unmethylated DNA of four human genomic regions from three genes, GSTP1, BRCA1 and MAGE-A1, is demonstrated with selectivity observed at a ratio of down to one unmethylated molecule in 105 methylated molecules. BDD-PCR has the potential to be used to selectively amplify and detect aberrantly demethylated genes, such as oncogenes, in cancers. Additionally BDD-PCR can be effectively utilised in improving the specificity of methylation specific PCR (MSP) by limiting amplification of DNA that is not fully converted, thus preventing misinterpretation of the methylation versus non-conversion.   相似文献   

3.
Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called ‘catalyzed hairpin assembly’. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a kcat value above 1 min−1. The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a ‘plug-and-play’ fashion.  相似文献   

4.
Altered DNA methylation has been linked to neoplastic cell transformation and is a hallmark of cancer progression. Therefore, the screening for differentially methylated sequences as tumor biomarkers has a significant implication in the clinical setting. To determine the cancer-linked alterations in DNA methylation pattern, we have applied an endonuclease, McrBC, to the existing methylation-sensitive arbitrarily primed polymerase chain reaction (msAP-PCR) method and developed McrBC-msAP-PCR. This modified approach allows detection of differentially methylated sites within unmethylated DNA domains enriched by regulatory sequences and CpG islands. In this method, we used digestion of DNA with the McrBC methylation-sensitive endonuclease to selectively exclude the methylated fraction of DNA, which comprises interspersed and tandem-repeated sequences and exons other than first exons, from analysis. The subsequent digestion of unmethylated DNA fragments with SmaI and HpaII methylation-sensitive restriction endonucleases followed by AP-PCR amplification resulted in the detection of unknown unique sequences associated with cancer-linked methylation changes in genomic DNA. Hypermethylation and hypomethylation are visualized by the increase or decrease in the band intensity of DNA fingerprints. By using this technique, we were able to differentiate clearly, identify, and characterize a number of novel unique DNA sequences with differentially methylated sites in normal and breast cancer cell lines and in normal and rat tumor liver tissues.  相似文献   

5.
The methods for synthesis and application of resins based on the functional domains of Kaiso and CpG-binding protein (CGBP), which can bind methylated and unmethylated CpG-dinucleotides, respectively, are shown. Kaiso resin was obtained by the affinity interaction of glutathione-sepharose with a chimeric protein, which is expressed in Escherichia coli and contain glutathione S-transferase (GST) and zinc finger domain of methyl-DNA-binding Kaiso protein within the same translation frame. Kaiso resin, like MBD-domain based resin, has an ability to bind methylated DNA. Experiments with the short DNA fragments demonstrated that methylated DNA is eluted from the resin by 0.7 M KCl, whereas unmethylated DNA is washed out by 0.2–0.5 M KCl after binding. Quantitative PCR showed that the enrichment with methylated p16 promoter region and the absence of accumulation of γ-actin unmethylated promoter were observed due to the binding of genomic DNA, isolated from the colo 320 cell line (human colorectal adenocarcinoma), with the Kaiso resin. The CGBP resin based on the CxxC domain of CGBP protein binds to the sequences which contain unmethylated CpG-dinucleotides. Our experiments also showed no effect of MBD3L1 protein on MBD2-resin capacity of binding with methylated DNA. The obtained resins can be applied to study methylation status of both specific DNA sequences and the whole genome.  相似文献   

6.
DNA methylation-based biomarkers have been discovered that could potentially be used for the diagnosis of cancer by detection of circulating, tumor-derived DNA in bodily fluids. Any methylation detection assay that would be applied to these samples must be capable of detecting small amounts of tumor DNA in the presence of background normal DNA. We have developed a real-time PCR assay, called HeavyMethyl, that is well suited for this application. HeavyMethyl uses methylation-specific oligonucleotide blockers and a methylation-specific probe to achieve methylation-specific amplification and detection. We tested the assays on unmethylated and artificially methylated DNA in order to determine the limit of detection. After careful optimization, our glutathione-S-transferase pi1 and Calcitonin assays can amplify as little as 30 and 60 pg of methylated DNA, respectively, and neither assay amplifies unmethylated DNA. The Calcitonin assay showed a highly significant methylation difference between normal colon and colon adenocarcinomas, and methylation was also detected in serum DNA from colon cancer patients. These assays show that HeavyMethyl technology can be successfully employed for the analysis of very low concentrations of methylated DNA, e.g. in serum of patients with tumors.  相似文献   

7.
During conditions of cell stress, the type I restriction and modification enzymes of bacteria show reduced, but not zero, levels of restriction of unmethylated foreign DNA. In such conditions, chemically identical unmethylated recognition sequences also occur on the chromosome of the host but restriction alleviation prevents the enzymes from destroying the host DNA. How is this distinction between chemically identical DNA molecules achieved? For some, but not all, type I restriction enzymes, alleviation is partially due to proteolytic degradation of a subunit of the enzyme. We identify that the additional alleviation factor is attributable to the structural difference between foreign DNA entering the cell as a random coil and host DNA, which exists in a condensed nucleoid structure coated with many non-specific ligands. The type I restriction enzyme is able to destroy the ‘naked’ DNA using a complex reaction linked to DNA translocation, but this essential translocation process is inhibited by DNA condensation and the presence of non-specific ligands bound along the DNA.  相似文献   

8.

Background

Graduate entry medicine raises new questions about the suitability of students with different backgrounds. We examine this, and the broader issue of effectiveness of selection and assessment procedures.

Methods

The data included background characteristics, academic record, interview score and performance in pre-clinical modular assessment for two years intake of graduate entry medical students. Exploratory factor analysis is a powerful method for reducing a large number of measures to a smaller group of underlying factors. It was used here to identify patterns within and between the selection and performance data.

Principal Findings

Basic background characteristics were of little importance in predicting exam success. However, easily interpreted components were detected within variables comprising the ‘selection’ and ‘assessment’ criteria. Three selection components were identified (‘Academic’, ‘GAMSAT’, ‘Interview’) and four assessment components (‘General Exam’, ‘Oncology’, ‘OSCE’, ‘Family Case Study’). There was a striking lack of relationships between most selection and performance factors. Only ‘General Exam’ and ‘Academic’ showed a correlation (Pearson''s r = 0.55, p<0.001).

Conclusions

This study raises questions about methods of student selection and their effectiveness in predicting performance and assessing suitability for a medical career. Admissions tests and most exams only confirmed previous academic achievement, while interview scores were not correlated with any consequent assessment.  相似文献   

9.
DNA methylation plays a central role in genomic regulation and disease. Sodium bisulfite treatment (SBT) causes unmethylated cytosines to be sequenced as thymine, which allows methylation levels to reflected in the number of ‘C’-‘C’ alignments covering reference cytosines. Di-base color reads produced by lifetech’s SOLiD sequencer provide unreliable results when translated to bases because single sequencing errors effect the downstream sequence. We describe FadE, an algorithm to accurately determine genome-wide methylation rates directly in color or nucleotide space. FadE uses SBT unmethylated and untreated data to determine background error rates and incorporate them into a model which uses Newton–Raphson optimization to estimate the methylation rate and provide a credible interval describing its distribution at every reference cytosine. We sequenced two slides of human fibroblast cell-line bisulfite-converted fragment library with the SOLiD sequencer to investigate genome-wide methylation levels. FadE reported widespread differences in methylation levels across CpG islands and a large number of differentially methylated regions adjacent to genes which compares favorably to the results of an investigation on the same cell-line using nucleotide-space reads at higher coverage levels, suggesting that FadE is an accurate method to estimate genome-wide methylation with color or nucleotide reads. http://code.google.com/p/fade/.  相似文献   

10.
Some naturally competent bacteria exhibit both a strong preference for DNA fragments containing specific ‘uptake sequences’ and dramatic overrepresentation of these sequences in their genomes. Uptake sequences are often assumed to directly reflect the specificity of the DNA uptake machinery, but the actual specificity has not been well characterized for any bacterium. We produced a detailed analysis of Haemophilus influenzae’s uptake specificity, using Illumina sequencing of degenerate uptake sequences in fragments recovered from competent cells. This identified an uptake motif with the same consensus as the motif overrepresented in the genome, with a 9 bp core (AAGTGCGGT) and two short flanking T-rich tracts. Only four core bases (GCGG) were critical for uptake, suggesting that these make strong specific contacts with the uptake machinery. Other core bases had weaker roles when considered individually, as did the T-tracts, but interaction effects between these were also determinants of uptake. The properties of genomic uptake sequences are also constrained by mutational biases and selective forces acting on USSs with coding and termination functions. Our findings define constraints on gene transfer by natural transformation and suggest how the DNA uptake machinery overcomes the physical constraints imposed by stiff highly charged DNA molecules.  相似文献   

11.
Aberrant CpG methylation changes occurring during tumour progression include the loss (hypomethylation) and gain (hypermethylation) of methyl groups. Techniques currently available for examining such changes either require selection of a region, then examination of methylation changes, or utilise methylation-sensitive restriction enzymes to identify an alteration. We describe here a novel method that identifies genomic regions as a consequence of altered methylation during tumourigenesis. A methyl-CpG binding domain column isolates methylated GC-rich sequences from both tumours and surrounding normal tissue. Subsequent subtractive hybridisation removes sequences common to both, leaving only methylated sequences unique to the tumour. Libraries of sequences generated using DNA derived from a breast tumour (histological grade; poorly differentiated) as ‘tester’ and from matched normal tissue as ‘driver’ were examined; 26% of clones had the sequence criteria of a CpG island (CGI). Analysis using the bisulfite technique revealed that a number of these sequences were methylated in tumour DNA relative to the normal control. We have therefore demonstrated the ability of this technique, the identification of CGI exhibiting altered methylation patterns (ICEAMP), to isolate tumour-specific methylated GC-rich sequences. This will allow a comprehensive identification of methylation changes during tumourigenesis and will lead to a better understanding of the processes involved.  相似文献   

12.
We developed a highly scalable ‘shotgun’ DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.  相似文献   

13.
Methylated cytosines appear as sequence variations following bisulfite treatment and polymerase chain reaction (PCR) amplification. By using methylation-specific PCR (MSP), it is possible to detect methylated sequences in a background of unmethylated DNA with a high level of sensitivity. MSP is frequently used to identify methylated alleles in carcinogenesis, and may be combined with the TaqMan real-time PCR system, which uses fluorescence-based detection of amplification products during the amplification phase of the PCR and increases the sensitivity of detection (MethyLight). Sequences that have been incompletely converted during the bisulfite treatment are frequently coamplified during MSP, resulting in an overestimation of DNA methylation. The presence of amplified sequences originating from partially unconverted material may be determined by sequencing or by restriction digests or Southern blots of MSPs. Alternately, we have developed a method where the PCR and conversion assay are combined within a single TaqMan reaction by using an additional fluorescent probe directed against unconverted DNA (ConLight-MSP). We recommend that MSP detection always should include a step to detect unconverted DNA to avoid overestimation of the frequency or level of methylated DNA in the sample.  相似文献   

14.
Inactive chromatin spreads from a focus of methylation.   总被引:21,自引:11,他引:10       下载免费PDF全文
  相似文献   

15.
The Escherichia coli McrA protein, a putative C5-methylcytosine/C5-hydroxyl methylcytosine-specific nuclease, binds DNA with symmetrically methylated HpaII sequences (Cm5CGG), but its precise recognition sequence remains undefined. To determine McrA’s binding specificity, we cloned and expressed recombinant McrA with a C-terminal StrepII tag (rMcrA-S) to facilitate protein purification and affinity capture of human DNA fragments with m5C residues. Sequence analysis of a subset of these fragments and electrophoretic mobility shift assays with model methylated and unmethylated oligonucleotides suggest that N(Y > R) m5CGR is the canonical binding site for rMcrA-S. In addition to binding HpaII-methylated double-stranded DNA, rMcrA-S binds DNA containing a single, hemimethylated HpaII site; however, it does not bind if A, C, T or U is placed across from the m5C residue, but does if I is opposite the m5C. These results provide the first systematic analysis of McrA’s in vitro binding specificity.  相似文献   

16.
Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of ‘DNA processing elements’ that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding ‘brute force’ filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient ‘human engineering’ approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.  相似文献   

17.
Development of a new methodology to create protein libraries, which enable the exploration of global protein space, is an exciting challenge. In this study we have developed random multi-recombinant PCR (RM-PCR), which permits the shuffling of several DNA fragments without homologous sequences. In order to evaluate this methodology, we applied it to create two different combinatorial DNA libraries. For the construction of a ‘random shuffling library’, RM-PCR was used to shuffle six DNA fragments each encoding 25 amino acids; this affords many different fragment sequences whose every position has an equal probability to encode any of the six blocks. For the construction of the ‘alternative splicing library’, RM-PCR was used to perform different alternative splicings at the DNA level, which also yields different block sequences. DNA sequencing of the RM-PCR products in both libraries revealed that most of the sequences were quite different, and had a long open reading frame without a frame shift or stop codon. Furthermore, no distinct bias among blocks was observed. Here we describe how to use RM-PCR for the construction of combinatorial DNA libraries, which encode protein libraries that would be suitable for selection experiments in the global protein space.  相似文献   

18.
Meiotic recombination is an important biological process. As a main driving force of evolution, recombination provides natural new combinations of genetic variations. Rather than randomly occurring across a genome, meiotic recombination takes place in some genomic regions (the so-called ‘hotspots’) with higher frequencies, and in the other regions (the so-called ‘coldspots’) with lower frequencies. Therefore, the information of the hotspots and coldspots would provide useful insights for in-depth studying of the mechanism of recombination and the genome evolution process as well. So far, the recombination regions have been mainly determined by experiments, which are both expensive and time-consuming. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the recombination regions. In this study, a predictor, called ‘iRSpot-PseDNC’, was developed for identifying the recombination hotspots and coldspots. In the new predictor, the samples of DNA sequences are formulated by a novel feature vector, the so-called ‘pseudo dinucleotide composition’ (PseDNC), into which six local DNA structural properties, i.e. three angular parameters (twist, tilt and roll) and three translational parameters (shift, slide and rise), are incorporated. It was observed by the rigorous jackknife test that the overall success rate achieved by iRSpot-PseDNC was >82% in identifying recombination spots in Saccharomyces cerevisiae, indicating the new predictor is promising or at least may become a complementary tool to the existing methods in this area. Although the benchmark data set used to train and test the current method was from S. cerevisiae, the basic approaches can also be extended to deal with all the other genomes. Particularly, it has not escaped our notice that the PseDNC approach can be also used to study many other DNA-related problems. As a user-friendly web-server, iRSpot-PseDNC is freely accessible at http://lin.uestc.edu.cn/server/iRSpot-PseDNC.  相似文献   

19.
Approximately 0.8% of the adenine residues in the macronuclear DNA of the ciliated protozoan Tetrahymena thermophila are modified to N 6-methyladenine. DNA methylation is site specific and the pattern of methylation is constant between clonal cell lines. In vivo, modification of adenine residues appears to occur exclusively in the sequence 5'-NAT-3', but no consensus sequence for modified sites has been found. In this study, DNA fragments containing a site that is uniformly methylated on the 50 copies of the macronuclear chromosome were cloned into the extrachromosomal rDNA. In the novel location on the rDNA minichromosome, the site was unmethylated. The result was the same whether the sequences were introduced in a methylated or unmethylated state and regardless of the orientation of the sequence with respect to the origin of DNA replication. The data show that sequence is insufficient to account for site-specific methylation in Tetrahymena and argue that other factors determine the pattern of DNA methylation.  相似文献   

20.
Transposable elements (TEs) and their relics play major roles in genome evolution. However, mobilization of TEs is usually deleterious and strongly repressed. In plants and mammals, this repression is typically associated with DNA methylation, but the relationship between this epigenetic mark and TE sequences has not been investigated systematically. Here, we present an improved annotation of TE sequences and use it to analyze genome-wide DNA methylation maps obtained at single-nucleotide resolution in Arabidopsis. We show that although the majority of TE sequences are methylated, ∼26% are not. Moreover, a significant fraction of TE sequences densely methylated at CG, CHG and CHH sites (where H = A, T or C) have no or few matching small interfering RNA (siRNAs) and are therefore unlikely to be targeted by the RNA-directed DNA methylation (RdDM) machinery. We provide evidence that these TE sequences acquire DNA methylation through spreading from adjacent siRNA-targeted regions. Further, we show that although both methylated and unmethylated TE sequences located in euchromatin tend to be more abundant closer to genes, this trend is least pronounced for methylated, siRNA-targeted TE sequences located 5′ to genes. Based on these and other findings, we propose that spreading of DNA methylation through promoter regions explains at least in part the negative impact of siRNA-targeted TE sequences on neighboring gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号