首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a guanosine 5′-triphosphate (GTP)-hydrolysis-dependent manner. Based on a previous cryo-electron microscopy study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF-containing posttermination ribosome triggers an interdomain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9-Å (Fourier shell correlation cutoff of 0.5) cryo-electron microscopy map of a 50S·EF-G·guanosine 5′-[(βγ)-imido]triphosphate·RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the noncleavable GTP analogue guanosine 5′-[(βγ)-imido]triphosphate. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in transfer RNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G's domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits.  相似文献   

2.
During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.  相似文献   

3.
During the elongation cycle, tRNA and mRNA undergo coupled translocation through the ribosome catalyzed by elongation factor G (EF-G). Cryo-EM reconstructions of certain EF-G-containing complexes led to the proposal that the mechanism of translocation involves rotational movement between the two ribosomal subunits. Here, using single-molecule FRET, we observe that pretranslocation ribosomes undergo spontaneous intersubunit rotational movement in the absence of EF-G, fluctuating between two conformations corresponding to the classical and hybrid states of the translocational cycle. In contrast, posttranslocation ribosomes are fixed predominantly in the classical, nonrotated state. Movement of the acceptor stem of deacylated tRNA into the 50S E site and EF-G binding to the ribosome both contribute to stabilization of the rotated, hybrid state. Furthermore, the acylation state of P site tRNA has a dramatic effect on the frequency of intersubunit rotation. Our results provide direct evidence that the intersubunit rotation that underlies ribosomal translocation is thermally driven.  相似文献   

4.
During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical modification by dimethyl sulfate or cleavage by hydroxyl radicals generated by Fe(II)-EDTA. In the state of the ribosome that is formed upon binding of EF-G but before the movement of the tRNAs takes place, residues 1054,1196, and 1201 in helix 34 in 16S rRNA are strongly protected. The protections depend on EF-G binding, but do not require GTP hydrolysis, and are lost upon translocation. Mutants of EF-G, which are active in ribosome binding and GTP hydrolysis but impaired in translocation, do not bring about the protections. According to cryo-electron microscopy (Stark et al., Cell, 2000, 100:301-309), there is no contact of EF-G with the protected residues of helix 34 in the pretranslocation state, suggesting that the observed protections are due to an induced conformational change. Thus, the present results indicate that EF-G binding to the pretranslocation ribosome induces a structural change of the head of the 30S subunit that is essential for subsequent tRNA-mRNA movement in translocation.  相似文献   

5.
Observation of intersubunit movement of the ribosome in solution using FRET   总被引:2,自引:0,他引:2  
Protein synthesis is believed to be a dynamic process, involving structural rearrangements of the ribosome. Cryo-EM reconstructions of certain elongation factor G (EF-G)-containing complexes have led to the proposal that translocation of tRNA and mRNA through the ribosome, from the A to P to E sites, is accompanied by a rotational movement between the two ribosomal subunits. Here, we have used F?rster resonance energy transfer (FRET) to monitor changes in the relative orientation of the ribosomal subunits in different complexes trapped at intermediate stages of translocation in solution. Binding of EF-G to the ribosome in the presence of the non-hydrolyzable GTP analogue GDPNP or GTP plus fusidic acid causes an increase in the efficiency of energy transfer between fluorophores introduced into proteins S11 in the 30 S subunit and L9 in the 50 S subunit, and a decrease in energy transfer between S6 and L9. Similar anti-correlated changes in energy transfer occur upon binding the GTP-requiring release factor RF3. These changes are consistent with the counter-clockwise rotation of the 30 S subunit relative to the 50 S subunit observed in cryo-EM studies. Reaction of ribosomal complexes containing the peptidyl-tRNA analogues N-Ac-Phe-tRNAPhe, N-Ac-Met-tRNAMet or f-Met-tRNAfMet with puromycin, conditions favoring movement of the resulting deacylated tRNAs into the P/E hybrid state, leads to similar changes in FRET. Conversely, treatment of a ribosomal complex containing deacylated and peptidyl-tRNAs bound in the A/P and P/E states, respectively, with EF-G.GTP causes reversal of the FRET changes. The use of FRET has enabled direct observation of intersubunit movement in solution, provides independent evidence that formation of the hybrid state is coupled to rotation of the 30 S subunit and shows that the intersubunit movement is reversed during the second step of translocation.  相似文献   

6.
7.
During ribosomal translation, the two ribosomal subunits remain associated through intersubunit bridges, despite rapid large-scale intersubunit rotation. The absence of large barriers hindering rotation is a prerequisite for rapid rotation. Here, we investigate how such a flat free-energy landscape is achieved, in particular considering the large shifts the bridges undergo at the periphery. The dynamics and energetics of the intersubunit contact network are studied using molecular dynamics simulations of the prokaryotic ribosome in intermediate states of spontaneous translocation. Based on observed occupancies of intersubunit contacts, residues were grouped into clusters. In addition to the central contact clusters, peripheral clusters were found to maintain strong steady interactions by changing contacts in the course of rotation. The peripheral B1 bridges are stabilized by a changing contact pattern of charged residues that adapts to the rotational state. In contrast, steady strong interactions of the B4 bridge are ensured by the flexible helix H34 following the movement of protein S15. The tRNAs which span the subunits contribute to the intersubunit binding enthalpy to an almost constant degree, despite their different positions in the ribosome. These mechanisms keep the intersubunit interaction strong and steady during rotation, thereby preventing dissociation and enabling rapid rotation.  相似文献   

8.
Helix 38 (H38) in 23 S rRNA, which is known as the "A-site finger (ASF)," is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.  相似文献   

9.
Cryo-electron microscopy has been used to visualize elongation factor G (EF-G) on the 70S ribosome in GDP and GTP states. GTP hydrolysis is required for binding of all the domains of EF-G to the pretranslocational complex and for the completion of translocation. In addition, large conformational changes have been identified in the ribosome. The head of the 30S subunit shifts toward the L1 protein side, and the L7/L12 stalk becomes bifurcated upon EF-G binding. Upon GTP hydrolysis, the bifurcation is reversed and an arc-like connection is formed between the base of the stalk and EF-G.  相似文献   

10.
A conserved translation factor, known as EF-G in bacteria, promotes the translocation of tRNA and mRNA in the ribosome during protein synthesis. Here, EF-G.ribosome complexes in two intermediate states, before and after mRNA translocation, have been probed with hydroxyl radicals generated from free Fe(II)-EDTA. Before mRNA translocation and GTP hydrolysis, EF-G protected a limited set of nucleotides in both subunits of the ribosome from cleavage by hydroxyl radicals. In this state, an extensive set of nucleotides, in the platform and head domains of the 30S subunit and in the L7/L12 stalk region of the 50S subunit, became more exposed to hydroxyl radical attack, suggestive of conformational changes in these domains. Following mRNA translocation, EF-G protected a larger set of nucleotides (23S rRNA helices H43, H44, H89, and H95; 16S rRNA helices h5 and h15). No nucleotide with enhanced reactivity to hydroxyl radicals was detected in this latter state. Both before and after mRNA translocation, EF-G protected identical nucleotides in h5 and h15 of the 30S subunit. These results suggest that h5 and h15 may remain associated with EF-G during the dynamic course of the translocation mechanism. Nucleotides in H43 and H44 of the 50S subunit were protected only after translocation and GTP hydrolysis, suggesting that these helices interact dynamically with EF-G. The effects in H95 suggest that EF-G interacts weakly with H95 before mRNA translocation and strongly and more extensively with this helix following mRNA translocation.  相似文献   

11.
Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.  相似文献   

12.
13.
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.  相似文献   

14.
The translocation step of elongation entails the coordinated movement of tRNA and mRNA on the ribosome. Translocation is promoted by elongation factor G (EF-G) and accompanied by GTP hydrolysis, which affects both translocation and turnover of EF-G. Both reactions are much slower (50-100-fold) when GTP is replaced with non-hydrolyzable GTP analogues or GDP, indicating that the reaction rates are determined by conformational transitions induced by GTP hydrolysis. Compared to the rate of uncatalyzed, spontaneous translocation, ribosome binding of EF-G with any guanine nucleotide reduces the free energy of activation by about 18 kJ/mol, whereas GTP hydrolysis contributes another 10 kJ/mol. The acceleration by GTP hydrolysis is due to large decrease in activation enthalpy by about 30 kJ/mol, compared to the reaction with GTP analogues or GDP, whereas the activation entropy becomes unfavorable and is lowered by about 20 kJ/mol (37 degrees C). The data suggest that GTP hydrolysis induces, by a conformational change of EF-G, a rapid conformational rearrangement of the ribosome ("unlocking") which determines the rates of both tRNA-mRNA translocation and recycling of the factor.  相似文献   

15.
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA–mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by ∼20 Å), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G•GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.  相似文献   

16.
Locking and unlocking of ribosomal motions   总被引:20,自引:0,他引:20  
Valle M  Zavialov A  Sengupta J  Rawat U  Ehrenberg M  Frank J 《Cell》2003,114(1):123-134
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.  相似文献   

17.
A Spirin 《Biochimie》1987,69(9):949-956
Three types of conformational changes in the translating ribosome are considered: (1) intersubunit movement (ribosome unlocking) during translocation; (2) L7/L12 stalk mobility affected by elongation factors; (3) change of tRNA residue during its transition from the A-site to the P-site. Relevant experimental data are reviewed.  相似文献   

18.
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.  相似文献   

19.
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.  相似文献   

20.
Elongation factor G (EF-G) promotes the translocation step in bacterial protein synthesis and, together with ribosome recycling factor (RRF), the disassembly of the post-termination ribosome. Unlike translocation, ribosome disassembly strictly requires GTP hydrolysis by EF-G. Here we report that ribosome disassembly is strongly inhibited by vanadate, an analog of inorganic phosphate (Pi), indicating that Pi release is required for ribosome disassembly. In contrast, the function of EF-G in single-round translocation is not affected by vanadate, while the turnover reaction is strongly inhibited. We also show that the antibiotic fusidic acid blocks ribosome disassembly by EF-G/RRF at a 1000-fold lower concentration than required for the inhibition of EF-G turnover in vitro and close to the effective inhibitory concentration in vivo, suggesting that the antimicrobial activity of fusidic acid is primarily due to the direct inhibition of ribosome recycling. Our results indicate that conformational coupling between EF-G and the ribosome is principally different in translocation and ribosome disassembly. Pi release is not required for the mechanochemical function of EF-G in translocation, whereas the interactions between RRF and EF-G introduce tight coupling between the conformational change of EF-G induced by Pi release and ribosome disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号