首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian X-chromosome inactivation is controlled by a multilayered silencing pathway involving both short and long non-coding RNAs, which differentially recruit the epigenetic machinery to establish chromatin asymmetries. In response to developmentally regulated small RNAs, dicer, a key effector of RNA interference, locally silences Xist on the active X-chromosome and establishes the heterochromatin conformation along the silent X-chromosome. The 1.6 kb RepA RNA initiates silencing by targeting the PRC2 polycomb complex to the inactive X-chromosome. In addition, the nuclear microenvironment is implicated in the initiation and maintenance of X-chromosome asymmetries. Here we review new findings involving these various RNA species in terms of understanding Xist gene regulation and the establishment of X-chromosome inactivation.  相似文献   

2.
3.
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U.  相似文献   

4.
We have elucidated the kinetics of histone methylation during X inactivation using an inducible Xist expression system in mouse embryonic stem (ES) cells. Previous reports showed that the ability of Xist to trigger silencing is restricted to an early window in ES cell differentiation. Here we show that this window is also important for establishing methylation patterns on the potential inactive X chromosome. By immunofluorescence and chromatin immunoprecipitation experiments we show that histone H3 lysine 27 trimethylation (H3K27m3) and H4 lysine 20 monomethylation (H4K20m1) are associated with Xist expression in undifferentiated ES cells and mark the initiation of X inactivation. Both marks depend on Xist RNA localisation but are independent of silencing. Induction of Xist expression after the initiation window leads to a markedly reduced ability to induce H3K27m3, whereas expression before the restrictive time point allows efficient H3K27m3 establishment. Our data show that Xist expression early in ES cell differentiation establishes a chromosomal memory, which is maintained in the absence of silencing. One consequence of this memory is the ability to introduce H3K27m3 efficiently after the restrictive time point on the chromosome that has expressed Xist early. Our results suggest that this silencing-independent chromosomal memory has important implications for the maintenance of X inactivation, where previously self-perpetuating heterochromatin structures were viewed as the principal form of memory.  相似文献   

5.
6.
《Epigenetics》2013,8(8):568-570
In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The non coding RNA Xist triggers X inactivation. Gene silencing by Xist is only possible in certain developmental contexts that only exist in cells of the early embryo and specific hematopoietic progenitors. Critical silencing factors may only be present in these contexts giving an explanation of why Xist is not operative outside these contexts. It has been demonstrated that Xist is functional in tumor cells, where SATB1 was identified as the first silencing factor for Xist mediated chromosome silencing.  相似文献   

7.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

8.
9.
10.
11.
Long noncoding RNAs (lncRNAs) such as Xist, Air, and Kcnq1ot1 are required for epigenetic silencing of multiple genes in cis within large chromosomal domains, including distant genes located hundreds of kilobase pairs away. Recent evidence suggests that all three of these lncRNAs are functional and that they silence gene expression, in part, through an intimate interaction with chromatin. Here we provide an overview of lncRNA-dependent gene silencing, focusing on recent findings for the Air and Kcnq1ot1 lncRNAs. We review molecular evidence indicating that these lncRNAs interact with chromatin and correlate their presence with specific histone modifications associated with gene silencing. A general model for a lncRNA-dependent gene-silencing mechanism is presented based on the apparent ability of lncRNAs to recruit histone-modifying activities to chromatin. However, alternate mechanisms may be required to explain the silencing of some lncRNA-dependent genes. Finally, we discuss unanswered questions and future perspectives associated with these enigmatic lncRNA molecules.  相似文献   

12.
13.
X inactivation is the mechanism by which mammals adjust the X-linked gene dosage between the sexes. The dosage difference between XX females and XY males is functionally equalized by silencing one of the two X chromosomes in female cells. This dosage-compensation mechanism is based on the long functional Xist RNA. Here, we review our understanding of dosage compensation and Xist function in the context of disease.  相似文献   

14.
Membranous nephropathy (MN), a type of glomerular nephritis, is the most common cause of nephrotic syndrome in human adults. Changes in gene expression as a result of epigenetic dysregulation through long noncoding RNAs (lncRNAs) are increasingly being recognized as important factors in disease. Using an experimental MN mouse model, we identify the first dysregulated lncRNAs, Xist and NEAT1, whose levels are significantly upregulated in both tubular epithelial and glomerular cells. MN is also often characterized by glomerular podocyte injury. Treatment of a mouse podocyte cell line with lipopolysaccharides to induce injury resulted in the stable elevation of Xist, but not NEAT1 levels. In mice, the observed changes in Xist levels are specific: Xist can be effectively detected in urine, with a strong correlation to disease severity, but not serum in MN samples. We find that regulation of Xist may be controlled by post-translational modifications. H3K27me3 levels are significantly downregulated in mouse MN kidney, where chromatin immunoprecipitation experiments also showed decreased H3K27me3 at Xist promoter regions. Finally, we show that our findings in mice can be extended to human clinical samples. Urinary Xist is significantly elevated in urine samples from patients with different types of glomerular nephritis, including MN, compared to normal counterparts. Together, our results suggest that a reduction of H3K27me3 at Xist promoter regions leads to elevated levels of urinary Xist, which may be used as a biomarker to detect MN.  相似文献   

15.
In mammals, the silencing step of the X-chromosome inactivation (XCI) process is initiated by the non-coding Xist RNA. Xist is known to be controlled by the non-coding Xite and Tsix loci, but the mechanisms by which Tsix and Xite regulate Xist are yet to be fully elucidated. Here, we examine the role of higher order chromatin structure across the 100-kb region of the mouse X-inactivation center (Xic) and map domains of specialized chromatin in vivo. By hypersensitive site mapping and chromosome conformation capture (3C), we identify two domains of higher order chromatin structure. Xite makes looping interactions with Tsix, while Xist makes contacts with Jpx/Enox, another non-coding gene not previously implicated in XCI. These regions interact in a developmentally-specific and sex-specific manner that is consistent with a regulatory role in XCI. We propose that dynamic changes in three-dimensional architecture leads to formation of separate chromatin hubs in Tsix and Xist that together regulate the initiation of X-chromosome inactivation.  相似文献   

16.
Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here, we exploit a precision epigenetic editing strategy and forced Xist activity to programme de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naïve pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which likely acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification, however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome‐wide CRISPR screening, we identify molecular factors that restrict heritable memory of epialleles in naïve pluripotent cells, and demonstrate that removal of chromatin factor Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is constrained in mammals, and reveals genomic and developmental contexts in which heritable memory is feasible.  相似文献   

17.
18.
19.
We have elucidated the kinetics of histone methylation during X inactivation using an inducible Xist expression system in mouse embryonic stem (ES) cells. Previous reports showed that the ability of Xist to trigger silencing is restricted to an early window in ES cell differentiation. Here we show that this window is also important for establishing methylation patterns on the potential inactive X chromosome. By immunofluorescence and chromatin immunoprecipitation experiments we show that histone H3 lysine 27 trimethylation (H3K27m3) and H4 lysine 20 monomethylation (H4K20m1) are associated with Xist expression in undifferentiated ES cells and mark the initiation of X inactivation. Both marks depend on Xist RNA localisation but are independent of silencing. Induction of Xist expression after the initiation window leads to a markedly reduced ability to induce H3K27m3, whereas expression before the restrictive time point allows efficient H3K27m3 establishment. Our data show that Xist expression early in ES cell differentiation establishes a chromosomal memory, which is maintained in the absence of silencing. One consequence of this memory is the ability to introduce H3K27m3 efficiently after the restrictive time point on the chromosome that has expressed Xist early. Our results suggest that this silencing-independent chromosomal memory has important implications for the maintenance of X inactivation, where previously self-perpetuating heterochromatin structures were viewed as the principal form of memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号