首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
香蕉束顶病毒研究进展   总被引:4,自引:0,他引:4  
香蕉束顶病毒(Bananabunchytopvirus,BBTV)引起的香蕉束顶病(Ban。bu。bytoPdisease)是香蕉一种严重的病毒病害。迄今此病已普遍分布在世界许多产区,诸如:亚洲、非洲、澳大利亚、南太平洋一些岛屿以及美国的夏威夷等地区[‘-’l。在我国广东、广西、福建、云南等省的部分产区的发病率约占5—25%左右,严重地块已发展到毁灭性程度卜]。1987年Dale曾对世界香蕉种植的地理分布和BBTV的流行范围之间的关系、病株症状、病毒病原学、流行病学、病毒诊断方法以及病害的控制作过全面的综述【门。然而由于BBTV存在于寄主植物的韧皮…  相似文献   

2.
香蕉束顶病毒(Bananabunchytopvirus,BBTV)是引起香蕉束顶病害(Bananabunchytopdisease,BBTD)的病毒,它严重地危害了香蕉的生产。综述了近年来香蕉束顶病毒的分离提纯方法,株系划分以及分类地位,较为全面的介绍了BBTV病毒基因组分结构和各组分编码蛋白的功能等,并提出了目前需要进一步澄清的问题。  相似文献   

3.
香蕉束顶病毒基因克隆和序列分析   总被引:11,自引:0,他引:11  
肖火根  HuJohn 《病毒学报》1999,15(1):55-63
对香蕉束顶病毒(BBTV)中国分离株DNA组份I(DNA-1)、外壳蛋白(CP)和运转蛋白(MP)基因进行了克隆和序列分析。BBTVDNA-1含有1103个核苷酸,与南太平洋和亚洲分离株分别有87%-88% 96.9-98%的核苷酸序列同源性。由DNA-1编码的复制酶含有186个在酸残基。与南太平洋和亚洲分离株分别有84.4%-95.8%和97.6%、98.0%的氨基酸序列同源性。外壳蛋白基因由5  相似文献   

4.
香蕉束顶病毒的纯化及理化特性   总被引:5,自引:0,他引:5       下载免费PDF全文
从具有典型香蕉束顶病(BBTD)症状的香蕉病组织中提纯了香蕉束顶病毒(Banana bunchy top virus,BBTV)。电镜下可观察到直径为18nm的球形病毒颗粒。最高紫外吸收在255nm,最低紫外吸收在240nm,A_(260)/A_(280)为1.30。用标准BBTV抗体通过ECL-Western转印法测定其外壳蛋白分子量为21kDa。其核酸经DNaseI、RNaseA和Mung Bean Nuclease分析,表明是约1kb的ssDNA。结果与国外文献报道一致。  相似文献   

5.
利用超低温保存方法脱除香蕉束顶病毒的研究   总被引:4,自引:1,他引:4  
香蕉束顶病毒(BBTV)是香蕉生产中的严重病害之一,主要通过感病材料和香蕉交脉蚜等昆虫进行传播,目前尚无有效防治方法.本研究以感染BBTV的巴西蕉(Musa AAA Cavendish)为材料,研究了感染BBTV的巴西蕉离体再生和超低温保存技术条件,表明离体茎尖在MS+6-BA 4 0 mg/L+NAA 0 4 mg/L的培养基上分化不定芽较好;采用玻璃化法超低温保存技术保存带有BBTV的香蕉茎尖,再生后植株BBTV脱除率达到60 6%,而常规的茎尖培养对BBTV的脱除率仅为26 7%.  相似文献   

6.
香蕉束顶病毒DNA组分6的克隆和序列分析   总被引:5,自引:0,他引:5  
香蕉束顶病(banana bunchy top disease,BBTD)是香蕉生产上重要的病害之一,它威胁着世界约1/4香蕉产区的生产[1].到1998年7月,世界上报道发生该病害的国家和地区达20多个,遍及亚洲、南太平洋地区和少数非洲国家.  相似文献   

7.
8.
香蕉束顶病毒DNA组分4的克隆与序列分析   总被引:3,自引:0,他引:3  
香蕉束顶病毒(banana bunchy top virus,BBTV)基因组中至少含有6个DNA组分,我们实验室已经对BBTV广东两个株系(NS和NSP)基因组中的DNA组分1、3、6进行了测序和报道.现又对NS和NSP的DNA组分4分别进行了克隆和序列分析.  相似文献   

9.
香蕉束顶病毒基因Ⅰ的克隆及序列分析   总被引:5,自引:0,他引:5  
腊平  蔡文启 《病毒学报》2000,16(2):158-161
以中国漳州地区感染BBTV的香蕉组织总DNA为模板,根据我国台湾地区BBTV分离物基因组Ⅰ序列,设计并合成了一对引物,通过PCR扩增出约500bp的片段。利用pBluescriptⅡSK T-载体获得此片段的克隆,经测序表明为BBTV组分Ⅰ的部分序列。由已测知的BBTV基因组Ⅰ序列设计一对相邻引物,以我国漳州的感染BBTV香蕉组织总DNA为模板,通过PCR坟增出约1.1kb的片段。利用pBlues  相似文献   

10.
本文利用PCR技术扩增得到香蕉束顶病毒(BBTV)NS株DNA组分5的全基因,该基因全长为1014nt,具有一个开放阅读框,编码146个氨基酸,蛋白质二级结构包括6个α-螺旋,7个β-折叠.NS株系与南太平洋组澳大利亚、夏威夷、埃及分离物DNA组分5核苷酸和编码的氨基酸序列相比较,核苷酸序列同源率介于88%~89%之间,氨基酸序列同源率介于80%~88%之间.NS株系与其它分离物在编码成视网膜细胞瘤蛋白(Retinoblastoma protein,Rb)的基元序列"LXCDE"附近的二级结构上表现明显的差异,推测这种差异可能影响与植物中Rb蛋白的结合效率.  相似文献   

11.
Bunchy top disease caused by the banana bunchy top virus (BBTV) is a serious disease in hill banana. Detection of the BBTV infection in the planting material could help in the effective management of the disease. An attempt was made to develop a sensitive polymerase chain reaction (PCR) and multiplex PCR-based method for detection of BBTV in hill banana. DNA was isolated from the experimental plants at third and sixth months after planting. Multiplex PCR was done with Coat Protein (CP) and Replicase (Rep) gene-specific primer, and banana ethylene insensitive like protein (EISL) primer as internal control to identify failure in PCR reaction. This study revealed that multiplex PCR is effective for BBTV screening in hill banana with the advantage of overcoming the false positive in PCR amplification.  相似文献   

12.
13.
香蕉束顶病毒DNA组分2、3的启动子区的组织特异性分析   总被引:1,自引:0,他引:1  
香蕉束顶病毒(BBTV)基因组至少由6个大小约为1.0-1.1kb的单链环状DNA组分所组成,每一个DNA组分包含编码区与非编码区。本文在前人的研究基础上进一步了解BBTV DNA组分启动子的功能。首先根据BBTV 海南分离物的全序列,通过常规PCR扩增出长为540bp的 BBTV DNA3组分启动子序列BV3.1,同时通过重叠PCR扩增出646bp的DNA2与DNA3组分非编码区拼接的重组启动子序列BV23,分别替代pBI121 35S启动子序列与gus基因进行融合,构建植物表达载体pBIBV3.1、pBIBV23。农杆菌介导转化获得的pBIBV3.1转基因烟草经GUS化学组织染色后,在其叶片的叶脉处检测到微弱的GUS活性,证实了DNA3组分的韧皮部特异表达活性;而pBIBV23转基因烟草,其叶片经GUS组织化学染色后,在叶肉、叶缘及一些叶脉上检测到弱GUS活性,这表明由BV23驱动的gus基因在烟草中类似于组成型表达,则DNA2组分转录方式可能有异于DNA3组分。  相似文献   

14.
Banana bunchy top virus (BBTV) is a ssDNA virus transmitted by the banana aphid, ( Pentalonia nigronervosa ). A polymerase chain reaction (PCR) assay was used to study BBTV transmission efficiency, to determine the minimum acquisition-access period, the minimum inoculation-access period, the retention time, and to examine the possibility of transovarial transmission in this vector. BBTV was acquired by banana aphids within 4 h and was transmitted within 15 min feeding. On average, more than 65% of single viruliferous adult aphids transmitted BBTV. The aphids retained BBTV for their adulthood of 15–20 days. None of the 131 offspring from adult aphids reared on infected bananas were BBTV positive. Aphid transmission experiments were conducted to determine if taro and gingers are hosts of BBTV. None of the 87 taro and ginger plants exposed to aphid inoculation were infected by BBTV. The BBTV-free status of these plants was verified by PCR assay for 6 months post-inoculation. In addition, none of the taro and ginger samples collected from fields adjacent to BBTV-infected banana plants tested positive for BBTV.  相似文献   

15.
Field experiments were conducted in Oahu, Hawaii, to investigate the effects of banana bunchy top virus (BBTV) infection on growth and morphology of banana ( Musa acuminata ). The time interval between aphid inoculation of BBTV and the initial appearance of disease symptoms (i.e. incubation period) was also determined. Plants infected with BBTV showed a significant reduction in petiole size (i.e. length and distance), plant canopy and height, leaf area, pseudostem diameter and chlorophyll content compared with control plants. Growth differences between virus-infected and control plants were not observed until 40–50 days after the plants were inoculated with viruliferous aphids. Other growth parameters such as petiole width and leaf production were not statistically different between infected and control plants. The incubation period of banana bunchy top disease or appearance of symptoms ranged from 25 to 85 days after aphid inoculation. However, PCR assays provided earlier detection of BBTV in banana plants compared with visual symptoms.  相似文献   

16.
Banana bunchy top disease caused by Banana bunchy top virus is the most serious viral disease of banana and plantain worldwide. The virus is transmitted by the aphid vector Pentalonia nigronervosa in a persistent manner. This paper deals with the effect of the interaction between plant growth promoting endophytic bacteria, Banana bunchy top virus, and the banana aphid Pentalonia nigronervosa in the expression of Pathogenesis-related proteins (PR-proteins) and defense enzymes in banana. The existence of virus in the aphids was confirmed by ELISA, DIBA and PCR. PCR could amplify 1100-bp replicase gene of BBTV from viruliferous aphids. A significant increase in the enzymatic activity of all measured PR proteins and defense enzymes, as compared to control plants, was seen in the plants inoculated with endophytic bacteria and challenged with viruliferous aphids. Native gel electrophoresis revealed expression of more isoforms of PR proteins viz., peroxidase and chitinase in the banana plants challenged with mixtures of plant growth promoting endophytic bacteria and viruliferous aphids. Enhanced activity of a PR-2 protein viz., β-1,3-glucanase was also noticed in the viruliferous aphids infested plants. Some of the defense-related enzymes viz., Polyphenol oxidase and Phenylalanine ammonia lyase and phenolic compounds were also upregulated, up to 5 days after aphid infestation and thereafter there was a reduction in the enzymatic activity. Thus, there exist a differential accumulation of PR proteins and defense-related enzymes, when there is tri-tropic interaction between endophytic bacteria, virus, and insect and the role of the endophytic bacteria in the defense mechanisms against insect pests needs to be elucidated.  相似文献   

17.
Benefit cost analysis is a tried and tested analytical framework that can clearly communicate likely net changes in producer welfare from investment decisions to diverse stakeholder audiences. However, in a plant biosecurity context, it is often difficult to predict policy benefits over time due to complex biophysical interactions between invasive species, their hosts, and the environment. In this paper, we demonstrate how a break-even style benefit cost analysis remains highly relevant to biosecurity decision-makers using the example of banana bunchy top virus, a plant pathogen targeted for eradication from banana growing regions of Australia. We develop an analytical approach using a stratified diffusion spread model to simulate the likely benefits of exclusion of this virus from commercial banana plantations over time relative to a nil management scenario in which no surveillance or containment activities take place. Using Monte Carlo simulation to generate a range of possible future incursion scenarios, we predict the exclusion benefits of the disease will avoid Aus$15.9-27.0 million in annual losses for the banana industry. For these exclusion benefits to be reduced to zero would require a bunchy top re-establishment event in commercial banana plantations three years in every four. Sensitivity analysis indicates that exclusion benefits can be greatly enhanced through improvements in disease surveillance and incursion response.  相似文献   

18.
Abstract

Transplant media as a means for the introduction of biological agents is currently being investigated in a variety of crops. This study aimed to investigate the impact of microbial inoculation in micropropagated banana plantlets to enhance their resistance against Banana bunchy top virus (BBTV). Virus indexed micropropagated plantlets of banana were subjected to root colonization followed by foliar spraying with bacterial strains Pseudomonas fluorescens Pf1, CHA0 and Bacillus subtilis EPB22 during primary and secondary hardening stage in the nursery, at the time of repotting and 3 months after planting in the pot. Microbe inoculated plantlets showed enhanced PR proteins and defense enzymes besides reducing banana bunchy top disease incidence under glasshouse condition. The results indicated the effective use of beneficial microbes in reducing the disease incidence of BBTV in tissue culture banana plantlets. In addition, the molecular characterization of endophytes isolated from banana plantlets, using SDS-PAGE and RAPD-PCR revealed that endophytes were categorized into two distinct groups. These results emphasize the significance of microorganisms in protection of young plantlets from transplanting stresses in field. Further, the use of beneficial microorganisms instead of chemicals sustains an ecological niche in the agricultural ecosystem.  相似文献   

19.
 Intron-containing fragments derived from the 5′ untranslated regions of the maize ubi1, maize adh1, rice act1 and sugarcane rbcS genes were tested for their enhancing effects on the banana bunchy top virus DNA-6 promoter (BT6.1) in banana (Musa spp. cv. Bluggoe) embryogenic cells. The rice act1 and maize ubi1 introns provided the highest levels of intron-mediated enhancement of GUS expression, increasing native BT6.1 promoter activity by about 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about tenfold, whereas the adh1 intron had no significant effect. In regenerated transgenic banana plants, the ubi1 intron significantly enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35 S promoter and did not appear to affect the tissue specificity of the promoter. Received: 28 July 2000 / Revision received: 21 August 2000 / Accepted: 4 October 2000  相似文献   

20.
Banana bunchy top disease is a major constraint to banana production in most regions where this crop is grown. The disease is caused by Banana bunchy top virus (BBTV), a multicomponent, single-stranded DNA virus of the family Nanoviridae. We have designed primers to a conserved region of the master replication-associated protein that are useful for the polymerase chain reaction (PCR)-mediated detection of BBTV. In addition, primers to banana genomic sequence are used as an internal control, overcoming the uncertainty (owing to false-negatives) inherent in PCR diagnostics. Together these primer sets are a valuable tool in the effort to control BBTV, particularly in screening micropropagated banana plantlets for the absence of virus before release to farmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号