首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trk receptors: mediators of neurotrophin action   总被引:46,自引:0,他引:46  
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.  相似文献   

3.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

4.
Nerve growth factor (NGF) binding to its receptor TrkA, which belongs to the family of receptor tyrosine kinases (RTKs), is known to induce its internalization, endosomal trafficking and subsequent lysosomal degradation. The Cbl family of ubiquitin ligases plays a major role in mediating ubiquitination and degradation of RTKs. However, it is not known whether Cbl participates in mediating ubiquitination of TrkA. Here we report that c-Cbl mediates ligand-induced ubiquitination and degradation of TrkA. TrkA ubiquitination and degradation required direct interactions between c-Cbl and phosphorylated TrkA. c-Cbl and ubiquitinated TrkA are found in a complex after NGF stimulation and are degraded in lysosomes. Taken together, our data demonstrate that c-Cbl can induce downregulation of NGF-TrkA complexes through ubiquitination and degradation of TrkA.  相似文献   

5.
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance.  相似文献   

6.
Ligands for G protein-coupled receptors (GPCR) are capable of activating mitogenic receptor tyrosine kinases, in addition to the mitogen-activated protein (MAP) kinase signaling pathway and classic G protein-dependent signaling pathways involving adenylyl cyclase and phospholipase. For example, receptors for epidermal growth factor (EGF), insulin-like growth-1 and platelet-derived growth factor and can be transactivated through G protein-coupled receptors. Neurotrophins, such as NGF, BDNF and NT-3 also utilize receptor tyrosine kinases, namely TrkA, TrkB and TrkC. Recently, it has been shown that activation of Trk receptor tyrosine kinases can also occur via a G protein-coupled receptor mechanism, without involvement of neurotrophins. Adenosine and adenosine agonists can activate Trk receptor phosphorylation specifically through the seven transmembrane spanning adenosine 2A (A2A) receptor. Several features of Trk receptor transactivation are noteworthy and differ significantly from other transactivation events. Trk receptor transactivation is slower and results in a selective increase in activated Akt. Unlike the biological actions of other tyrosine kinase receptors, increased Trk receptor activity by adenosine resulted in increased cell survival. This article will discuss potential mechanisms by which adenosine can activate trophic responses through Trk tyrosine kinase receptors.  相似文献   

7.
Neurotrophins are structurally related proteins regulating brain development and function. Molecular evolution studies of neurotrophins and their receptors are essential for understanding the mechanisms underlying the coevolution processes of these gene families and how they correlate with the increased complexity of the vertebrate nervous system. In order to improve our current knowledge of the molecular evolution of neurotrophins and receptors, we have collected all information available in the literature and analyzed the genome database for each of them. Statistical analysis of aminoacid and nucleotide sequences of the neurotrophin and Trk family genes was applied to both complete genes and mature sequences, and different phylogenetic methods were used to compare aminoacid and nucleotide sequences variability among the different species. All collected data favor a model in which several rounds of genome duplications might have facilitated the generation of the many different neurotrophins and the acquisition of specific different functions correlated with the increased complexity of the vertebrate nervous system during evolution. We report findings that refine the structure of the evolutionary trees for neurotrophins and Trk receptors families, indicate different rates of evolution for each member of the two families, and newly demonstrate that the NGF-like genes found in Fowlpox and Canarypox viruses are closely related to reptile NGF.  相似文献   

8.
Neurotrophins and their receptors of the Trk family play a critical role in proliferation, differentiation and survival of the developing neurons. There are reports on their expression in neoplasms too, namely, the primitive neuroectodermal tumours of childhood, and in adult astrocytic gliomas. The involvement of Trk receptors in tumour pathogenesis, if any, is not known. With this end in view, the present study has examined 10 tumour biopsy samples (identified as astrocytoma, pilocytic astrocytoma and glioblastoma) and peritumoral brain tissue of adult patients, for the presence of Trk A and Trk B receptors, by immunohistochemistry. The nature of the tumour samples was also confirmed by their immunoreactivity (IR) to glial fibrillary acidic protein. In the peritumoral brain tissue, only neurons showed IR for Trk A and Trk B. On the contrary, in the tumour sections, the IR to both receptors was localized in the vast majority of glia and capillary endothelium. There was an obvious pattern of IR in these gliomas: high levels of IR were present in the low-grade (type I and II) astrocytoma; whereas in the advanced malignant forms (WHO grade IV giant cell glioblastoma and glio-blastoma multiforme) the IR was very weak. These findings suggest that Trk A and Trk B are involved in tumour pathogenesis, especially in the early stage, and may respond to signals that elicit glial proliferation, and thus contribute to progression towards malignancy.  相似文献   

9.
Endocytic trafficking of signaling receptors to alternate intracellular pathways has been shown to lead to diverse biological consequences. In this study, we report that two neurotrophin receptors (tropomyosin-related kinase TrkA and TrkB) traverse divergent endocytic pathways after binding to their respective ligands (nerve growth factor and brain-derived neurotrophic factor). We provide evidence that TrkA receptors in neurosecretory cells and neurons predominantly recycle back to the cell surface in a ligand-dependent manner. We have identified a specific sequence in the TrkA juxtamembrane region, which is distinct from that in TrkB receptors, and is both necessary and sufficient for rapid recycling of internalized receptors. Conversely, TrkB receptors are predominantly sorted to the degradative pathway. Transplantation of the TrkA recycling sequence into TrkB receptors reroutes the TrkB receptor to the recycling pathway. Finally, we link these divergent trafficking pathways to alternate biological responses. On prolonged neurotrophin treatment, TrkA receptors produce prolonged activation of phosphatidylinositol 3-kinase/Akt signaling as well as survival responses, compared with TrkB receptors. These results indicate that TrkA receptors, which predominantly recycle in signal-dependent manner, have unique biological properties dictated by its specific endocytic trafficking itinerary.  相似文献   

10.
We screened sera from patients with various neurological disorders for the presence of anti-neutral glycosphingolipids antibodies and only found them in sera from relapsing polychondritis with limbic encephalitis patients. Neutral glycosphingolipids are resident in membrane lipid rafts where high affinity nerve growth factor (NGF) receptor, Trk is co-localized. Therefore, we examined whether these antibodies influence the action of NGF in NGF-responsive cells. The results strongly suggest that these antibodies enhance NGF-induced Trk autophosphorylation and neurite outgrowth as well as neurofilament M expression. These data strongly indicate that these anti-neutral glycosphingolipids antibodies have a functional impact on NGF-Trk-mediated intracellular signal transduction pathway.  相似文献   

11.
Mitochondrial membrane biogenesis requires the interorganelle transport of phospholipids. Phosphatidylserine (PtdSer) synthesized in the endoplasmic reticulum and related membranes (mitochondria-associated membrane (MAM)) is transported to the mitochondria by unknown gene products and decarboxylated to form phosphatidylethanolamine at the inner membrane by PtdSer decarboxylase 1 (Psd1p). We have designed a screen for strains defective in PtdSer transport (pstA mutants) between the endoplasmic reticulum and Psd1p that relies on isolating ethanolamine auxotrophs in suitable (psd2Delta) genetic backgrounds. Following chemical mutagenesis, we isolated an ethanolamine auxotroph that we designate pstA1-1. Using in vivo and in vitro phospholipid synthesis/transport measurements, we demonstrate that the pstA1-1 mutant is defective in PtdSer transport between the MAM and mitochondria. The gene that complements the growth defect and PtdSer transport defect of the pstA1-1 mutant is MET30, which encodes a substrate recognition subunit of the SCF (suppressor of kinetochore protein 1, cullin, F-box) ubiquitin ligase complex. Reconstitution of different permutations of MAM and mitochondria from wild type and pstA1-1 strains demonstrates that the MET30 gene product affects both organelles. These data provide compelling evidence that interorganelle PtdSer traffic is regulated by ubiquitination.  相似文献   

12.
Neurotrophins (NTs) represent a family of proteins that play an important role in the survival, development, and function of neurons. Extensive efforts are currently being made to develop small molecules endowed with agonist or antagonist NT activity. The structurally versatile N-termini of these proteins are considered regions of interest for the design of new molecules. By combining experimental and computational approaches, we analyzed the intrinsic conformational preferences of the N-termini of two of the most important NTs: NGF (NGF-Nter) and NT4 (NT4-Nter). Circular dichroism spectra clearly indicate that both peptides show a preference for random coil states. Because this finding does not preclude the possibility that structured forms may occur in solution as minor conformational states, we performed molecular-dynamics simulations to gain insights into the structural features of populated species. In line with the circular dichroism analysis, the simulations show a preference for unstructured states for both peptides. However, the simulations also show that for NT4-Nter, and to a lesser extent for NGF-Nter, helical conformations, which are required for binding to the Trk receptor, are present in the repertoire of structures that are intrinsically accessible to these peptides. Accordingly, molecular recognition of NTs by the Trk receptor is accomplished by the general mechanism known as population shift. These findings provide a structural rationale for the observed activity of synthetic peptides based on these NT regions. They also suggest strategies for the development of biologically active peptide-based compounds.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) is clearly associated with rheumatoid arthritis (RA) disease severity. However, the regulation of MIF during the course of RA has not been subjected to similar scientific scrutiny. The aim of our study was to investigate the role of various Toll-like receptors (TLRs) and inflammatory mediators on MIF production by dendritic cells (DCs) in healthy controls and RA patients. DCs were cultured from 12 healthy donors and 12 RA patients. Triggering via TLR mediated pathways was achieved using various TLR specific ligands alone or in combination: Pam3Cys for TLR2, LPS and recombinant extra domain A containing fibronectin for TLR4 and Poly(I:C) and R848 for TLR3 and TLR7, respectively. In addition, iDCs from healthy controls were incubated with various cytokines, RANKL and CD40L for 48 h. MIF levels were measured using an ELISA assay. Stimulation of DCs by TLR4 ligands resulted in higher MIF production compared to immature DCs from healthy controls (p<0.002) and RA patients (p<0.002). DCs from RA patients produced higher MIF levels than healthy controls both at the immature stage (p<0.04) as well after full maturation via TLR2 (p<0.04) and TLR4 (p<0.001) triggering. Incubation with TLR3 and TLR7 ligands resulted in a significantly decreased secretion of MIF in RA patients and controls. Simultaneous incubation of TLR4 with either TLR3 or TLR7 ligands resulted in a decrease of MIF secretion when compared to TLR4 stimulation alone. The secretion of MIF increased when DCs were stimulated with TNF-alpha, RANKL and CD40L. The secretion of MIF by dendritic cells is differentially regulated by TLRs. In addition, TNF-alpha, RANKL, and CD40L augment MIF production by DCs and thus play a potential role in the amplification of the inflammatory loop in RA.  相似文献   

14.
Neurotrophin-induced Trk tyrosine kinase receptor activation and neuronal cell survival responses have been reported to be under the control of a membrane associated sialidase. Here, we identify an unprecedented membrane sialidase mechanism initiated by nerve growth factor (NGF) binding to TrkA to potentiate GPCR-signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live primary neurons and TrkA- and TrkB-expressing cell lines. Central to this process is that Neu1/MMP-9 complex is bound to TrkA on the cell surface of naïve primary neurons and TrkA-expressing cells. Tamiflu completely blocks this sialidase activity in live TrkA-PC12 cells treated with NGF with an IC50 of 3.876 μM with subsequent inhibition of Trk activation in primary neurons and neurite outgrowth in TrkA-PC12 cells. Our findings uncover a Neu1 and MMP-9 cross-talk on the cell surface that is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and cellular signaling.  相似文献   

15.
16.
17.
18.
The glucocorticoid receptor accumulates in nuclei only in the presence of bound hormone, whereas the estrogen receptor has been reported to be constitutively nuclear. To investigate this distinction, we compared the nuclear localization domains of the two receptors and the capacity of their respective hormone-binding regions to regulate nuclear localization activity. As with the glucocorticoid receptor, we showed that the human estrogen receptor contained a nuclear localization signal between the DNA-binding and hormone-binding regions (amino acids 256-303); however, in contrast to the glucocorticoid receptor, the estrogen receptor lacked a second nuclear localization domain within the hormone-binding region. Moreover, the hormone-binding domain of the unliganded estrogen receptor failed to regulate nuclear localization signals, although it efficiently regulated other receptor functions. We conclude that the two receptors employ a common mechanism for signal transduction involving a novel "inactivation" function, but that they differ in their control of nuclear localization. Thus, despite the strong relatedness of the estrogen and glucocorticoid receptors in structure and activity, certain differences in their properties could have important functional implications.  相似文献   

19.
Protein ubiquitination has been implicated in ATP-dependent protein turnover and in a number of biological processes in eukaryotic cells. The ubiquitination activating enzyme, E1, and ubiquitin carrier protein, E2, are two essential enzymes in the protein ubiquitination machinery. Using purified E1 and E2 from rabbit reticulocytes and various protein kinases, which include cAMP-dependent protein kinase, protein kinase C, and protein tyrosine kinase, we demonstrated that E1 is phosphorylated by protein kinase C, with a stoichiometry of 0.65 mol of phosphate/mol of E1, and one of the E2 isoforms, E2(32kDa), is phosphorylated by protein tyrosine kinase to 2 eq of phosphate/mol of protein. Phosphorylation of E1 causes a 2-fold enhancement of its activity as monitored by ubiquitin-dependent ATP in equilibrium PPi exchange. When 1 eq of phosphate was incorporated into E2(32kDa), a 2.4-fold activation was also observed for its activity to catalyze the ubiquitination of histone H2A. The regulatory significance of this finding is discussed.  相似文献   

20.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide that acts through G protein-coupled receptors, exerts neuroprotective effects upon many neuronal populations. However, the intracellular signaling mechanisms that account for PACAP's trophic effects are not well characterized. Here we have tested the possibility that PACAP uses neurotrophin signaling pathways. We have found that PACAP treatment resulted in an increase in TrkA tyrosine kinase activity in PC12 cells and TrkB activity in hippocampal neurons. The activation of TrkA receptors by PACAP required at least 1 h of treatment and did not involve binding to nerve growth factor. Moreover, PACAP induced an increase in activated Akt through a Trk-dependent mechanism that resulted in increased cell survival after trophic factor withdrawal. The increases in Trk and Akt were blocked by K252a, an inhibitor of Trk receptor activity. In addition, transactivation of TrkA receptors by PACAP could be inhibited with PP1, an inhibitor of Src family kinases or BAPTA/AM, (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester), an intracellular calcium chelator. Therefore, PACAP can exert trophic effects through a mechanism involving Trk receptors and utilization of tyrosine kinase signaling. This ability may explain several neuroprotective actions of PACAP upon neuronal populations after injury, nerve lesion, or neurotrophin deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号