首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies we have presented evidence for the role of peptides, isolated from heads of the mosquito Aedes aegypti, in stimulating fluid secretion by isolated Malpighian tubules. In the present study we conducted experiments to investigate whether these peptides are involved in hormone-mediated diuresis after a blood meal. In vivo experiments showed that the head was required to maintain diuresis after the blood meal. Whereas feeding on blood triggered a prompt diuresis in the intact mosquito, subsequent decapitation caused a gradual, not an abrupt, decline in urine excretion rate. Hemolymph collected from mosquitoes fed blood significantly stimulated fluid secretion in vitro by isolated Malpighian tubules, whereas hemolymph from unfed or blood-fed decapitated mosquitoes did not. These results indicate that a diuretic factor was released into the hemolymph after a blood meal. This factor was not present in the hemolymph of decapitated females. We identified the head as a source of diuretic factors. Peptides isolated from a head extract by high-performance liquid chromatography, when injected into the hemocoel of blood-fed decapitated mosquitoes, triggered diuresis in vivo and also stimulated fluid secretion in isolated Malpighian tubules. These studies support the hypothesis that the head is a storage site for diuretic peptides that may be released after a blood meal to control diuresis.  相似文献   

2.
The systematic analysis of structure-activity relationships of insect kinins on two heterologous receptor-expressing systems is described. Previously, kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the dengue vector, the mosquito Aedes aegypti (L.), were functionally and stably expressed in CHO-K1 cells. In order to determine which kinin residues are critical for the peptide-receptor interaction, kinin core analogs were synthesized as an Ala-replacement series of the peptide FFSWGa and tested by a calcium bioluminescence plate assay. The amino acids Phe(1) and Trp(4) were essential for activity of the insect kinins in both receptors. It was confirmed that the pentapeptide kinin core is the minimum sequence required for activity and that the C-terminal amide is also essential. In contrast to the tick receptor, a large increase in efficacy is observed in the mosquito receptor when the C-terminal pentapeptide is N-terminally extended to a hexapeptide. The aminoisobutyric acid (Aib)-containing analog, FF[Aib]WGa, was as active as superagonist FFFSWGa on the mosquito receptor in contrast to the tick receptor where it was statistically more active than FFFSWGa by an order of magnitude. This restricted conformation Aib analog provides information on the conformation associated with the interaction of the insect kinins with these two receptors. Furthermore, the analog FF[Aib]WGa has been previously shown to resist degradation by the peptidases ACE and nephrilysin and represents an important lead in the development of biostable insect kinin analogs that ticks and mosquitoes cannot readily deactivate.  相似文献   

3.
It is known that insect kinins increase diuresis and fluid secretion in the Aedes aegypti Malpighian tubule, causing a rapid drop of the transepithelial resistance and increasing chloride conductance from the hemolymph towards the tubule lumen. The tubule is composed of both principal and stellate cells. The main route for increased chloride influx upon kinin treatment is proposed to be paracellular, with septate junctions acquiring increased chloride selectivity and conductance. Therefore, kinin treatment renders the Ae. aegypti tubule a “leaky epithelium”, and under this model the kinin receptor is postulated to be expressed in principal cells. However, in another dipteran, the fruit fly Drosophila melanogaster, the main route for chloride transport is transcellular through stellate cells. In both the fruit fly and the mosquito Anopheles stephensi the kinin receptor has been immunolocalized in stellate cells, where it regulates transepithelial chloride permeability. Here we show that in Ae. aegypti, similarly, the stellate cells express the kinin receptor. This was confirmed through immunohistochemistry with two specific anti-kinin receptor antibodies and confocal analysis. The receptor is detected as a 75 kDa band in western blot. These results indicate that the currently accepted model for chloride transport must be re-evaluated in Ae. aegypti and suggest the kinin regulatory signals controlling intercellular junctions originate in the stellate cells.  相似文献   

4.
Arthropod hormone receptors are potential targets for novel pesticides as they regulate many essential physiological and behavioral processes. The majority of them belong to the superfamily of G protein-coupled receptors (GPCRs). We have focused on characterizing arthropod kinin receptors from the tick and mosquito. Arthropod kinins are multifunctional neuropeptides with myotropic, diuretic, and neurotransmitter function. Here, a method for systematic analyses of structure-activity relationships of insect kinins on two heterologous kinin receptor-expressing systems is described. We provide important information relevant to the development of biostable kinin analogs with the potential to disrupt the diuretic, myotropic, and/or digestive processes in ticks and mosquitoes.The kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the mosquito Aedes aegypti (Linnaeus), were stably expressed in the mammalian cell line CHO-K1. Functional analyses of these receptors were completed using a calcium bioluminescence plate assay that measures intracellular bioluminescence to determine cytoplasmic calcium levels upon peptide application to these recombinant cells. This method takes advantage of the aequorin protein, a photoprotein isolated from luminescent jellyfish. We transiently transfected the aequorin plasmid (mtAEQ/pcDNA1) in cell lines that stably expressed the kinin receptors. These cells were then treated with the cofactor coelenterazine, which complexes with intracellular aequorin. This bond breaks in the presence of calcium, emitting luminescence levels indicative of the calcium concentration. As the kinin receptor signals through the release of intracellular calcium, the intensity of the signal is related to the potency of the peptide.This protocol is a synthesis of several previously described protocols with modifications; it presents step-by-step instructions for the stable expression of GPCRs in a mammalian cell line through functional plate assays (Staubly et al., 2002 and Stables et al., 1997). Using this methodology, we were able to establish stable cell lines expressing the mosquito and the tick kinin receptors, compare the potency of three mosquito kinins, identify critical amino acid positions for the ligand-receptor interaction, and perform semi-throughput screening of a peptide library. Because insect kinins are susceptible to fast enzymatic degradation by endogenous peptidases, they are severely limited in use as tools for pest control or endocrinological studies. Therefore, we also tested kinin analogs containing amino isobutyric acid (Aib) to enhance their potency and biostability. This peptidase-resistant analog represents an important lead in the development of biostable insect kinin analogs and may aid in the development of neuropeptide-based arthropod control strategies.  相似文献   

5.
The multifunctional 'insect kinins' of arthropods share the evolutionarily conserved C-terminal pentapeptide core sequence Phe-X(1)-X(2)-Trp-Gly-NH(2), where X(1)=His, Asn, Ser, or Tyr and X(2)=Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects, including the house cricket, Acheta domesticus. Insect kinins, however, are susceptible to fast enzymatic degradation by endogenous peptidases that severely limit their potential use as tools for pest control or for endocrinological studies. To enhance resistance to peptidases, the core insect kinin sequence was structurally modified in this study to replace native peptide bonds susceptible to proteolytic degradation. These modifications include incorporation of two stereochemical variants of the β-turn mimetic motif 4-aminogutamate in place of the X(1)-X(2) residues, insertion of a reduced peptide bond between residues Trp-Gly, and replacement of the Phe residue with a hydrocinnamyl group. The resulting biostable, peptidomimetic analogs contain no native peptide bonds and yet retain significant diuretic activity in an in vitro cricket Malpighian tubule fluid secretion assay, matching the efficacy of a native A. domesticus kinin (Achdo-KI). These novel analogs represent ideal new tools for endocrinologists studying arthropod kinin regulated processes in vivo, and provide leads in the development of novel, environmentally friendly pest insect management agents capable of disruption of the critical processes that kinins regulate.  相似文献   

6.
The multifunctional 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1=His, Asn, Ser, or Tyr and X2=Ser, Pro, or Ala; and are associated with the regulation of diuresis in a variety of species of insects. We previously reported the functional expression of a southern cattle tick (Boophilus microplus) G protein-coupled receptor that is activated by insect kinins. Four different stereochemical variants of each of the 4-aminopyroglutamic acid (APy) and tetrazole moieties, mimics of a cis-peptide bond, type VI beta-turn in insect kinins were now evaluated on the expressed tick receptor using a calcium bioluminescence plate assay. This study represents the first investigation of the interaction of restricted-conformation analogs incorporating components that mimic specific conformations and/or peptide bond orientations in an expressed arthropod neuropeptide receptor. Analog Ac-RF[APy]WGa (2R,4S) was at least 10-fold more active than the other analogs, thus identifying the optimal stereochemistry for tick receptor interaction. The optimal stereochemistry for the tetrazole insect kinin analogs in the tick receptor assay was identified as (D,L). The APy is superior to the tetrazole as a scaffold for the design of mimetic insect kinin analogs. These biostable analogs provide new tools for arthropod endocrinologists and potential leads in the development of selective, environmentally friendly arthropod pest control agents capable of disrupting insect kinin regulated processes.  相似文献   

7.
Administration of aprotinin, a kallikrein inhibitor, to anesthetized rats infused with 0.9% saline solution to expand the extracellular fluid volume resulted in blunted natriuresis and diuresis. Urine flow declined from 27.1 +/- 2.6 to 8.0 +/- 0.9 microliter/min/100 g body wt while sodium and potassium excretion were reduced 63 and 45%, respectively (P less than 0.01). Mean blood pressure and glomerular filtration rate were not significantly altered by aprotinin. Acute or chronic pretreatment with DOCA, to enhance kinin synthesis, failed to modify the renal excretory response to aprotinin suggesting that saline loading alone was able to induce kinin generation fully in these rats. The results indicate that aprotinin enhanced the reabsorption of filtrate in rats expanded with isotonic saline and imply an influence of renal kinins on the tubular transport of salt and water.  相似文献   

8.
The insect kinins are present in a wide variety of insects and function as potent diuretic peptides in flies. A C-terminal aldehyde insect kinin analog, Fmoc-RFFPWG-H (R-LK-CHO), demonstrates stimulation of Malpighian tubule fluid secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly. R-LK-CHO reduced the total amount of urine voided over 3 h from flies injected with 1 microL of distilled water by almost 50%. The analog not only inhibits stimulation of housefly fluid secretion by the native kinin Musdo-K, but also by thapsigargin, a SERCA inhibitor, and by ionomycin, a calcium ionophore. The activity of R-LK-CHO is selective, however, as related C-terminal aldehyde analogs do not demonstrate an inhibitory response on housefly fluid secretion. The selective inhibitory activity of R-LK-CHO on housefly tubules represents an important lead in the development of environmentally friendly insect management agents based on the insect kinins.  相似文献   

9.
Summary. High fructose feeding induces moderate increases in blood pressure of normal rats, associated with hyperinsulinemia, insulin resistance and impaired glucose tolerance. Increased vascular resistance, and sodium retention have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid has been reported to have antihypertensive and antinatriuretic actions. In addition, taurine is shown to increase the excretion of nitrite and kinin availability and hence would be expected to improve the vascular tone. In the present study, the involvement of kinins in the blood pressure lowering effect of taurine was investigated by coadministration of Hoe 140, a kinin B2 receptor antagonist along with taurine. The effects of taurine on plasma and urinary concentrations of sodium and tissue kallikrein activity were studied in high fructose-fed rats. Fructose-fed rats had elevated blood pressure and decreased levels of sodium in urine. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and coadministration of Hoe 140 abolished this effect of taurine in high fructose-fed rats. The findings confirm the antinatriuretic action of taurine and also suggest a role for the kinins in the mechanism of taurine action in diet-induced hypertension.  相似文献   

10.
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.  相似文献   

11.
Evolution of anthropophilic hematophagy in insects resulted in the coordination of various physiological processes for survival. In female mosquitoes, a large blood meal provides proteins for egg production and as a trade-off, rapid elimination of the excess water and solutes (Na+, Cl) is critical for maintaining homeostasis and removing excess weight to resume flight and avoid predation. This post-prandial excretion is achieved by the concerted action of multiple hormones. Diuresis and natriuresis elicited by the calcitonin-like diuretic hormone 31 (DH31) are believed to be mediated by a yet uncharacterized calcitonin receptor (GPRCAL) in the mosquito Malpighian tubules (MTs), the renal organs. To contribute knowledge on endocrinology of mosquito diuresis we cloned GPRCAL1 from MT cDNA. This receptor is the ortholog of the DH31 receptor from Drosophila melanogaster that is expressed in principal cells of the fruit fly MT. Immunofluorescence similarly showed AaegGPRCAL1 is present in MT principal cells in A. aegypti, however, exhibiting an overall gradient-like pattern along the tubule novel for a GPCR in insects. Variegated, cell-specific receptor expression revealed a subpopulation of otherwise phenotypically similar principal cells. To investigate the receptor contribution to fluid elimination, RNAi was followed by urine measurement assays. In vitro, MTs from females that underwent AaegGPRcal1 knock-down exhibited up to 57% decrease in the rate of fluid secretion in response to DH31. Live females treated with AaegGPRcal1 dsRNA exhibited 30% reduction in fluid excreted after a blood meal. The RNAi-induced phenotype demonstrates the critical contribution of this single secretin-like family B GPCR to fluid excretion in invertebrates and highlights its relevance for the blood feeding adaptation. Our results with the mosquito AaegGPRCAL1 imply that the regulatory function of calcitonin-like receptors for ion and fluid transport in renal organs arose early in evolution.  相似文献   

12.
13.
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.  相似文献   

14.
Local generation of kinins in working skeletal muscle tissue in man   总被引:1,自引:0,他引:1  
The effect of standardized isometric forearm work on circulating and local kinin concentrations was investigated in 12 healthy volunteers using the forearm catheter technique. Radioimmunological kinin determination in arterial blood and in the venous effluent of forearm muscle tissue was performed using a modification of Shimamoto's technique of blood sampling and kinin extraction. Under basal conditions, there was no arterio-venous difference of kinins. Throughout the whole experiment, arterial--reflecting systemically circulating--kinins did not change. In muscle venous blood, immunoreactive kinins were not significantly elevated during work, whereas a marked increase was detected in the recovery period (5.0 +/- 0.6 vs. 10.2 +/- 2.0 pmol/l; p less than 0.01). The data demonstrate, that kinins are locally generated in calculated amounts (32.7 +/- 8.4 fmol/(100 g x min) that are known to be sufficient to induce local vasodilatory and metabolic effects at the site of muscle contraction, but below the threshold for systemic cardiovascular actions.  相似文献   

15.
This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.  相似文献   

16.
Mosquito‐transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar‐fed and blood‐fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar‐ or blood‐based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar‐fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up‐regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2‐DE profiles of immunogenic Ae. aegypti SG BF‐related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal.  相似文献   

17.
The kallikrein-kinin system is activated during inflammation and plays a major role in the inflammatory process. One of the main mechanisms of kinin action includes the modulation of neutrophil function employing both receptors for kinins, B1 and B2. In this report we show by the use of B1 receptor-deficient mice that neutrophil migration in inflamed tissues is dependent on kinin B1 receptors. However, there is no change in circulating leukocyte number and composition after genetic ablation of this receptor. Furthermore, apoptosis of neutrophils necessary for the resolution of persistent inflammatory processes is impaired in mice lacking the B1 receptor. We also show that this receptor is expressed on neutrophils, thus it may be directly involved in the induction of apoptosis in these cells after prolonged activation at inflamed sites. In conclusion, our data show that the kinin B1 receptor modulates migration and the life span of neutrophils at sites of inflammation and may be therefore an important drug target in the therapy of inflammatory diseases.  相似文献   

18.
A novel multiple membrane blood‐feeding system for mosquitoes has been developed for the study and routine maintenance of Aedes aegypti L. and Aedes albopictus Skuse that require a meal of vertebrate blood to produce eggs. This blood‐feeding system uses cattle collagen sausage‐casing membrane to facilitate feeding. The efficiency of this blood‐feeding system was compared to a live mice blood source. We observed that Ae. aegypti that fed on pig whole blood had 89.7% (w/o ATP) and 90.7% (w/ ATP) blood‐feeding rates, which were not significantly different from the mice‐fed ones (98.0%). Ae. albopictus fed on pig whole blood (w/ ATP) had a success rate of 84.4%, which was significantly different from the mice‐fed mosquitoes (51.1%). The feeding rates did not differ between sausage‐casing membrane and Parafilm‐M®. The survival rate, fecundity, pupation, and pupal emergence rates of Aedes females fed on pig whole blood were not significantly different from the mice‐fed ones. The artificial blood feeder can be applied to replace live animals as blood sources. Considering that this simple, inexpensive, convenient, and efficient feeding device can be built with common laboratory materials for research on Aedes mosquitoes.  相似文献   

19.
The kallikrein-kinin system(KKS) is an intricate endogenous pathway involved in several physiological and pathological cascades in the brain. Due to the pathological effects of kinins in blood vessels and tissues, their formation and degradation are tightly controlled. Their components have been related to several central nervous system diseases such as stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy and others. Bradykinin and its receptors(B1R and B2R) may have a role in the pathophysiology of certain central nervous system diseases. It has been suggested that kinin B1R is up-regulated in pathological conditions and has a neurodegenerative pattern, while kinin B2R is constitutive and can act as a neuroprotective factor in many neurological conditions. The renin angiotensin system(RAS) is an important blood pressure regulator and controls both sodium and water intake. AngⅡ is a potent vasoconstrictor molecule and angiotensin converting enzyme is the major enzyme responsible for its release. AngⅡ acts mainly on the AT1 receptor, with involvement in several systemic and neurological disorders. Brain RAS has been associated with physiological pathways, but is also associated with brain disorders. This review describes topics relating to the involvement of both systems in several forms of brain dysfunction and indicates components of the KKS and RAS that have been used as targets in several pharmacological approaches.  相似文献   

20.
The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1=His, Asn, Ser, or Tyr and X2=Ser, Pro, or Ala. Eight different analogs of the insect kinin C-terminal pentapeptide active core in which the critical residues Phe 1, Pro3 and Trp 4 are replaced with beta 3-amino acid and/or their beta2-amino acid counterparts were evaluated on recombinant insect kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini) and the dengue vector, the mosquito Aedes aegypti (L.). A number of these analogs previously demonstrated enhanced resistance to degradation by peptidases. Single-replacement analog beta 2 Trp 4 and double-replacement analog [beta 3 Phe 2, beta 3 Pro 3] of the insect kinins proved to be selective agonists for the tick receptor, whereas single-replacement analog beta 3 Pro 3 and double-replacement analog [beta 3 Phe, beta 3 Pro 3] were strong agonists on both mosquito and tick receptors. These biostable analogs represent new tools for arthropod endocrinologists and potential leads in the development of selective, environmentally friendly arthropod pest control agents capable of disrupting insect kinin-regulated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号