首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
在猕猴执行延缓辨别作业和单纯辨别作业时,观察了与作业无关的新异刺激对额叶神经元延缓期放电的影响。在这两种作业中,延缓期在1—4s之间随机变化。此时,动物必须高度注意信号的变化,稍不注意即导致操作错误。此外,在延缓辨别作业中,动物在延缓期还要暂时记住暗示期的信号,单纯辨别作业则无此要求。在203个与作业相关的神经元中,有70个神经元在延缓期出现放电频率变化,其中见于延缓辨别作业者41个,见于单纯辨别作业者29个。实验结果表明,在这两种作业的延缓期所出现的神经元放电增多的反应,有着许多相同的特点。与课题无关的声、光、触、痛等刺激引起分心时,神经元的延缓期反应出现明显的变化,随之出现操作错误。多数神经元的反应受到抑制,但也有出现反应增强者,而且同一神经元对不同感觉模式的无关刺激可出现不同的效应,表现出不同程度的感觉模式特异性。此外,无关刺激在延缓期和在测试间歇期可产生不同甚至相反的效应。上述在延缓期出现反应的神经元主要位于额叶弓状沟上支内侧部的一定范围内。本文对实验结果进行了讨论,认为额叶神经元的延缓期反应,可能在很大程度上与注意有关。额叶神经元感觉模式各种程度的特异性可能是注意的通道选择性的神经基础。额叶的背内侧部,包括前额叶后部和运动前区前部  相似文献   

2.
Prior research has shown that people place more trust in a counterpart referred to as a “partner” than as an “opponent” in a bargaining game. This is thought to be because the appellations “partner” or “opponent” serve as subtle cues activating a postulated friend-or-foe (FOF) mental module. However, no research has investigated the association between FOF cues and trust in an investment game from an evolutionary perspective. The present research demonstrates the effect of FOF cues on trust among Chinese samples in an actual investment game (Study 1) and in a hypothetical investment game (Study 2), and further demonstrates the moderating role of survival pressure on the association between FOF cues and trust—FOF cues influence trust in a scenario involving survival pressure but not in a scenario lacking survival pressure (Study 3). These findings are consistent with the existence of an adaptive FOF mental mechanism used by human beings to solve survival challenges.  相似文献   

3.
To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat''s frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.  相似文献   

4.
Summary The response properties and gross morphologies of neurons that connect the medulla and midbrain in the butterfly Papilio aegeus are described. The neurons presented give direction-selective responses, i.e. they are excited by motion in the preferred direction and the background activity of the cells is inhibited by motion in the opposite, null, direction. The neurons are either maximally sensitive to horizontal motion or to slightly off-axis vertical upward or vertical downward motion, when tested in the frontal visual field. The responses of the cells are dependent on the contrast frequency of the stimulus with peak values at 5–10 Hz. The receptive fields of the medulla neurons are large and are most sensitive in the frontal visual field. Examination of the local and global properties of the receptive fields of the medulla neurons indicates that (1) they are fed by local elementary motion-detectors consistent with the correlation model and (2) there is a non-linear spatial integration mechanism in operation.  相似文献   

5.
Unit and network activity of neurons in the visual, sensorimotor, and frontal cortical areas and dorsal striatum was investigated in cats under conditions of choice of the reinforcement value depending on its delay. The animals did not differ from each other in behavior. After immediate or delayed responses cats got low- or highly-valuable reinforcement, respectively. Single-unit activity in the visual and sensorimotor cortical areas and dorsal striatum was similar during performance of immediate and delayed responses. However, significant inhibition was observed in the frontal neurons during the delay period. The network activity of visual and frontal cortex displayed smaller number of interneuronal interactions during delayed responses as compared to immediate reactions. The network activity of neurons in the brain structures under study pointed to the interstructural interaction, but only during delayed reactions, steady interneuronal communication was observed between the frontal cortex and dorsal striatum. Thus, both types of estimation of cellular activity revealed differences in the ensemble organization during different types of behavior and showed specific reactions of neuronal ensembles.  相似文献   

6.
Schoppik D  Nagel KI  Lisberger SG 《Neuron》2008,58(2):248-260
Neural activity in the frontal eye fields controls smooth pursuit eye movements, but the relationship between single neuron responses, cortical population responses, and eye movements is not well understood. We describe an approach to dynamically link trial-to-trial fluctuations in neural responses to parallel variations in pursuit and demonstrate that individual neurons predict eye velocity fluctuations at particular moments during the course of behavior, while the population of neurons collectively tiles the entire duration of the movement. The analysis also reveals the strength of correlations in the eye movement predictions derived from pairs of simultaneously recorded neurons and suggests a simple model of cortical processing. These findings constrain the primate cortical code for movement, suggesting that either a few neurons are sufficient to drive pursuit at any given time or that many neurons operate collectively at each moment with remarkably little variation added to motor command signals downstream from the cortex.  相似文献   

7.
Receptive fields of simple cells in the primate visual cortex were well fit in the space and time domains by the Gaussian Derivative (GD) model for spatio-temporal vision. All 23 fields in the data sample could be fit by one equation. varying only a single shape number and nine geometric transformation parameters. A difference-of-offset-Gaussians (DOOG) mechanism for the GD model also fit the data well. Other models tested did not fit the data as well as or as succinctly, or failed to converge on a unique solution, indicating over-parameterization. An efficient computational algorithm was found for the GD model which produced robust estimates of the direction and speed of moving objects in real scenes.  相似文献   

8.
The frontal and parietal eye fields serve as functional landmarks of the primate brain, although their correspondences between humans and macaque monkeys remain unclear. We conducted fMRI at 4.7 T in monkeys performing visually-guided saccade tasks and compared brain activations with those in humans using identical paradigms. Among multiple parietal activations, the dorsal lateral intraparietal area in monkeys and an area in the posterior superior parietal lobule in humans exhibited the highest selectivity to saccade directions. In the frontal cortex, the selectivity was highest at the junction of the precentral and superior frontal sulci in humans and in the frontal eye field (FEF) in monkeys. BOLD activation peaks were also found in premotor areas (BA6) in monkeys, which suggests that the apparent discrepancy in location between putative human FEF (BA6, suggested by imaging studies) and monkey FEF (BA8, identified by microstimulation studies) partly arose from methodological differences.  相似文献   

9.
Others’ gaze and emotional facial expression are important cues for the process of attention orienting. Here, we investigated with magnetoencephalography (MEG) whether the combination of averted gaze and fearful expression may elicit a selectively early effect of attention orienting on the brain responses to targets. We used the direction of gaze of centrally presented fearful and happy faces as the spatial attention orienting cue in a Posner-like paradigm where the subjects had to detect a target checkerboard presented at gazed-at (valid trials) or non gazed-at (invalid trials) locations of the screen. We showed that the combination of averted gaze and fearful expression resulted in a very early attention orienting effect in the form of additional parietal activity between 55 and 70 ms for the valid versus invalid targets following fearful gaze cues. No such effect was obtained for the targets following happy gaze cues. This early cue-target validity effect selective of fearful gaze cues involved the left superior parietal region and the left lateral middle occipital region. These findings provide the first evidence for an effect of attention orienting induced by fearful gaze in the time range of C1. In doing so, they demonstrate the selective impact of combined gaze and fearful expression cues in the process of attention orienting.  相似文献   

10.
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen.  相似文献   

11.
The development of the fields of the frontal zone (8, 3, 10, 11, 12) were compared in the pre- and postnatal periods oflife in the nacaque-rhesus and man. The cyto-mielcarchitectonical and guantitative methods wereused. The square surfaces of the above fields were measured, their per cent ratios to thesquare surface of all the cortex, new cortex and frontal zone were calculated. The work hasrevealed the following: 1. General regularities in the development of frontal zones in monkeysand man: a) shorter terms for the formation of philogenetically old fields-11, 12, 8 andlonger terms for the new ones-9 and 10:b) predominant development of the frontal zone at theexpense of progressive young fields 9 and 10: c) predominat formation of the frontal zone bothkinds of primates in the postnatal period. 2. The specific features for each field (the termsfor isolation of the fields, the rate and direction of their development). 3.Substantial difference: more rapid maturation of the frontal zone in macaques (by the 6th -12th months of life)and more prolonged one in humans-by 12 years. A considerable growth of philogenetically newstructures (fields 9 and 10) in the system of all the cortex and the frontal zone wasshown in man as compared with monkey. The experimental ontogentical material is interpreted.  相似文献   

12.
Aimsto study fear of falling (FOF) syndrome at 1 year in a population of elderly individuals referred to a specific outpatient clinic for dizziness, falls and syncope. To analyse which variables gathered at the beginning of the study were related with FOF at that time and 1 year later.Methodsa prospective cohort study was performed from April 2000 to December 2001. Sixty-six elderly individuals referred to a specific outpatient clinic for dizziness, falls and syncope were classified in a group with FOF (n = 31) or a group without FOF (n = 35). Patients without all the tests and those lost to follow-up were excluded. The protocol included medical history, physical examination, tilt test and routine or specific complementary tests, when deemed necessary. FOF was determined through the direct question: Are you afraid of falling?ResultsFOF disappeared in 14 patients (45.2%) who had this syndrome at the beginning of the study and developed in five patients (14.3%) who did not (p = 0.06). After multivariate analyses, the variables associated with FOF at the beginning of the study were: taking benzodiazepines, recurrent dizziness, higher blood urea levels and a drop in systolic blood pressure with upright position. The variables significantly associated with fear of falling 1 year later were: angiotensin-converting enzyme inhibitors, positive Hallpike's manoeuvre and a drop in diastolic blood pressure with the head-up-tilt test. The model also included taking benzodiazepines and symptom reproduction with movement of the neck.Conclusionsat 1 year, FOF syndrome decreased in nearly half the patients who had this syndrome at the beginning of the study but developed in other patients without this syndrome at that time. No association was found with falls at the beginning or end of the study. At 1 year of follow-up, FOF was associated with intake of certain medications and data from the tilt test.  相似文献   

13.
Electrophysiology and brain imaging of biological motion   总被引:22,自引:0,他引:22  
The movements of the faces and bodies of other conspecifics provide stimuli of considerable interest to the social primate. Studies of single cells, field potential recordings and functional neuroimaging data indicate that specialized visual mechanisms exist in the superior temporal sulcus (STS) of both human and non-human primates that produce selective neural responses to moving natural images of faces and bodies. STS mechanisms also process simplified displays of biological motion involving point lights marking the limb articulations of animate bodies and geometrical shapes whose motion simulates purposeful behaviour. Facial movements such as deviations in eye gaze, important for gauging an individual's social attention, and mouth movements, indicative of potential utterances, generate particularly robust neural responses that differentiate between movement types. Collectively such visual processing can enable the decoding of complex social signals and through its outputs to limbic, frontal and parietal systems the STS may play a part in enabling appropriate affective responses and social behaviour.  相似文献   

14.
In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects were instructed to wait for an auditory "cue" signaling the location where a subsequent "target" sound was likely to be presented. The target was occasionally replaced by an unexpected "novel" sound in the uncued ear, to trigger involuntary attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs. 1500-Hz pure-tone "standard" trains. The sound of clustered fMRI acquisition (starting at t?=?7.82 sec) served as a controlled trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention shifting activated the superior intra--parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found -evidence for a frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets activated much wider areas of superior temporal auditory cortices than shifting cues.  相似文献   

15.
Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.  相似文献   

16.
A robust finding in the human neurosciences is the observation of a left hemisphere specialization for processing spoken language. Previous studies suggest that this auditory specialization and brain asymmetry derive from a primate ancestor. Most of these studies focus on the genus Macaca and all demonstrate a left hemisphere bias. Due to the narrow taxonomic scope, however, we lack a sense of the distribution of this asymmetry among primates. Further, although the left hemisphere bias appears mediated by conspecific calls, other possibilities exist including familiarity, emotional relevance and more general acoustic properties of the signal. To broaden the taxonomic scope and test the specificity of the apparent hemisphere bias, we conducted an experiment on vervets (Cercopithecus aethiops)-a different genus of old world monkeys and implemented the relevant acoustic controls. Using the same head orienting procedure tested with macaques, results show a strong left ear/right hemisphere bias for conspecific vocalizations (both familiar and unfamiliar), but no asymmetry for other primate vocalizations or non-biological sounds. These results suggest that although auditory asymmetries for processing species-specific vocalizations are a common feature of the primate brain, the direction of this asymmetry may be relatively plastic. This finding raises significant questions for how ontogenetic and evolutionary forces have impacted on primate brain evolution.  相似文献   

17.
We recorded the responses of lateral line units in the midbrain torus semicircularis of goldfish, Carassius auratus, to a 50-Hz vibrating sphere and determined the unit's spatial receptive fields for various distances between fish and sphere and for different directions of sphere vibration. All but one unit responded to the vibrating sphere with an increase in discharge rate. Only a proportion (25?%) of the units exhibited phase-locked responses. Receptive fields were narrow or broad and contained one, two or more areas of increased discharge rate. The data show that the receptive fields of toral lateral line units are in many respects similar to those of brainstem units but differ from those of afferent nerve fibres. The responses of primary afferents represent the pressure gradient pattern generated by a vibrating sphere and provide information about sphere location and vibration direction. Across the array of lateral line neuromasts, the fish brain in principle can derive this information. Nevertheless, toral units tuned to a distinct sphere location or sensitive to a distinct sphere vibration direction were not found. Therefore, it is conceivable that the torus semicircularis uses a population code to determine spatial location and vibration direction of a vibrating sphere.  相似文献   

18.
Cells in macaque ventral premotor cortex (area F5c) respond to observation or production of specific hand-object interactions. Studies in humans associate the left inferior frontal gyrus, including putative F5 homolog pars opercularis, with observing hand actions. Are these responses related to the realized goal of a prehensile action or to the observation of dynamic hand movements? Rapid, event-related fMRI was used to address this question. Subjects watched static pictures of the same objects being grasped or touched while performing a 1-back orienting task. In all 17 subjects, bilateral inferior frontal cortex was differentially activated in response to realized goals of observed prehensile actions. Bilaterally, precentral gyrus was most frequently activated (82%) followed by pars triangularis (73%) and pars opercularis (65%).  相似文献   

19.
Ozaki TJ 《PloS one》2011,6(5):e20079
Previous effective connectivity analyses of functional magnetic resonance imaging (fMRI) have revealed dynamic causal streams along the dorsal attention network (DAN) during voluntary attentional control in the human brain. During resting state, however, fMRI has shown that the DAN is also intrinsically configured by functional connectivity, even in the absence of explicit task demands, and that may conflict with effective connectivity studies. To resolve this contradiction, we performed an effective connectivity analysis based on partial Granger causality (pGC) on event-related fMRI data during Posner's cueing paradigm while optimizing experimental and imaging parameters for pGC analysis. Analysis by pGC can factor out exogenous or latent influences due to unmeasured variables. Typical regions along the DAN with greater activation during orienting than withholding of attention were selected as regions of interest (ROIs). pGC analysis on fMRI data from the ROIs showed that frontal-to-parietal top-down causal streams along the DAN appeared during (voluntary) orienting, but not during other, less-attentive and/or resting-like conditions. These results demonstrate that these causal streams along the DAN exclusively mediate voluntary covert orienting. These findings suggest that neural representations of attention in frontal regions are at the top of the hierarchy of the DAN for embodying voluntary attentional control.  相似文献   

20.
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F‐box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F‐box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long‐day and short‐day photoperiods. Conversely, transgenic plants expressing the F‐box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2‐LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc‐3 loss‐of‐function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号