首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A disarmed Tn5 vector (pUT::Ptac-phzABCDEFG) was used to introduce a single copy of the genes responsible for phenazine-1-carboxylic acid (PCA) biosynthesis into the chromosome of a plant-growth-promoting rhizobacterium Pseudomonas fluorescens. The PCA gene cluster was modified for expression under a constitutive Ptac promoter and lacked the phzIR regulators. PCA-producing variants significantly improved the ability of the wild-type P. fluorescens to reduce damping-off disease of pea seedlings caused by Pythium ultimum, even under conditions of heavy soil infestation. Under conditions of oxygen limitation that are typical of the rhizosphere, PCA production per cell in vitro was greater than that recorded in fast-growing, nutrient-rich cultures. Similarly, when the in vitro nutrient supply was limited, P fluorescens::phz variants that produced the most PCA effectively competed against P. ultimum by suppressing mycelial development. Soil-based bioassays confirmed that the level of PCA biosynthesis correlated directly with the efficacy of biological control and the persistence of inocula in soil microcosms. They also showed that soil pretreatment with bacteria provides a suitable method for plant protection by reducing infection, effectively decontaminating the soil. These data demonstrate that the insertion of a single chromosomal copy of the genes for a novel antifungal compound, PCA, enhances the ecological fitness of a natural isolate already adapted to the rhizosphere and capable of suppressing fungal disease.  相似文献   

2.
Abstract Kanamycin-resistant Pseudomonas fluorescens DF57-3 cells (Tn5 modified) inoculated in soil microcosms rapidly lost their culturability, as defined by visible colony formation on Kings B agar supplemented with kanamycin. Thus, after 40 days only 0.02–0.35% of the initial inoculum was culturable. A microcolony epifluorescence technique was developed to determine the viable, but non-culturable subpopulation. A suspension of bacteria from the soil was prepared in salt solution after a sonication procedure and a sample was filtered onto a 0.2 μm Nuclepore filter. The filter was then placed for 3–4 days on the surface of Kings B agar before staining with acridine orange for epifluorescence microscopy. By staining and washing the filters carefully, disruption of microcolonies could be avoided. A majority of the microcolonies resulted from 2–3 cell divisions during the first 2 days of the incubation period, after which the cell divisions stopped. These microcolonies were taken to represent a population of viable, but non-culturable cells and comprised about 20% of the initial inoculum. A similar recovery was obtained when the filters were incubated on the surface of citrate minimal medium or soil extract medium. A few microcolonies showed continued growth on the filters, however, and their number corresponded well with that of visible macrocolonies. Observation by microscopy of a few (2–3) cell divisions (microcolony epifluorescence technique) is proposed for determination of subpopulations of viable, but non-culturable bacteria in soil.  相似文献   

3.
A simple technique in which rRNA-targeted oligodeoxynucleotide probes are used to identify bacteria immobilized on membranes is described. By using colony lifts, bacteria are directly transferred from plates to untreated nitrocellulose membranes. Alternatively, cells resuspended from colonies can be applied to membranes by using a vacuum manifold under high-salt conditions. Blotted cells are baked and hybridized under stringent conditions by using standard protocols. Treatment of blotted cells with sodium dodecyl sulfate, urea, formaldehyde, or protease had no apparent effect on hybridization signals. Hybridization to rRNA from cells that had been stored refrigerated for 6 days was readily detected; however, fivefold more cells (approximately 10(7) cells) were required to obtain hybridization signals comparable to those generated by cells not subjected to storage. The sequences of oligonucleotide probes specific for Pseudomonas cepacia, Comamonas testosteroni, and Acinetobacter calcoaceticus and a group probe identifying Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas fluorescens, Comamonas acidovorans, and "Flavobacterium" lutescens are presented. In conjunction with the colony lift hybridization procedure, bacteria isolated from river water were identified by using these probes.  相似文献   

4.
The effects of cyanogenic Pseudomonas fluorescens strains introduced into soil on the kinetic of colony formation and bacterial community structure were investigated. About 7.8 x 10(8) and 1.2 x 10(9) cfu per g dry soil of TA1 and B2 were added to the soil portions, respectively. The parameters of colony formation by heterotrophic soil bacteria were determined. The bacterial community structure and phenotypic diversity were studied using concept of r/K strategies and echophysiological index, respectively. The physiological state of indigenous heterotrophic bacteria and gram-negative group did not change under the influence of the cyanogenic strains introduced. Phenotypic diversity of the soil bacteria also did not change significantly. However, some short-term shifts in community structure of indigenous heterotrophic bacteria were noticed. This study shows that the introduction of great numbers of cyanogenic P. fluorescens strains could be safely used as potential agents in biological control of soil-born pathogens.  相似文献   

5.
We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.  相似文献   

6.
Abstract Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations ranging from 0.5 to 5.0% (w/v). Survival of bacterial cells was improved with the use of alginate or bentonite. Transport, as determined by destructive sampling of the columns, was reduced with the use of alginate encapsulation. Drying of the beads had no influence on transport. The presence of bentonite in the topsoil, either pre-mixed through the soil, or applied as a slurry together with the bacteria, also reduced transport, except when 0.5% was pre-mixed through the soil. P. fluorescens cells encapsulated in alginate beads prepared with water and supplemented with skim milk powder and bentonite showed the best survival during the time of the experiment and the most reduced transport compared to the control. Therefore, cells encapsulated in this way are suitable, due to their optimal survival and reduced spread, for use in a field experiment with genetically manipulated bacteria.  相似文献   

7.
Extracellular polysaccharides play an important role in the formation of bacterial biofilms. We tested the biofilm-forming ability of two mutant strains with increased production of acidic extracellular polysaccharides compared with the wild-type biocontrol strain Pseudomonas fluorescens CHA0. The anchoring of bacteria to axenic nonmycorrhizal and mycorrhizal roots as well as on extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices was investigated. The nonmucoid wild-type strain P. fluorescens CHA0 adhered very little on all surfaces, whereas both mucoid strains formed a dense and patchy bacterial layer on the roots and fungal structures. Increased adhesive properties of plant-growth-promoting bacteria may lead to more stable interactions in mixed inocula and the rhizosphere.  相似文献   

8.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

9.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

10.
A novel method using a moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955 was developed as a tag to identify genetically modified microorganisms released into the environment. Pseudomonas fluorescens 1855.344, a plant-growth-promoting rhizosphere bacterium, was chosen as the organism in which to develop and test the system. moc genes carried by pYDH208, a cosmid clone containing a 20-kb segment of the octopine-mannityl opine-type Ti plasmid, conferred on P. fluorescens strains the capacity to utilize mannopine and agropine (AGR) as a sole source of carbon and energy. Modified P. fluorescens strains containing moc or moc::nptII inserted into a chromosomal site were constructed by marker exchange. One such modified strain, PF5MT12, utilized AGR as a sole carbon source and contained detectable levels of mannopine cyclase, an easily assayable enzyme encoded by the moc region. Catabolism of AGR could be used to recover selectively the marked strain from mixed populations containing a large excess of closely related bacteria. Nucleic acid-based detection strategies were developed on the basis of the unique fusion region between Agrobacterium DNA and Pseudomonas DNA in strain PF5MT12. The specificity and sensitivity of detection of PF5MT12 were enhanced by amplifying the fused DNA region by using PCR. The target fragment could be detected at levels of sensitivity comparable to those of other described PCR-based gene tags, even in the presence of high levels of Agrobacterium, Pseudomonas, or Escherichia coli DNA. This gene tag strategy gives a method for direct selection and enumeration of the marked strain from mixtures containing a large excess of closely related bacteria and a sensitive and highly specific system for detection by PCR amplification of the target fragment even in the presence of large amounts of DNA from related or unrelated organisms.  相似文献   

11.
With the direct epifluorescent filter technique (DEFT), differentiation of bacteria was achieved by a modified Gram-staining procedure using acridine orange as the counterstain. The method enumerated viable Gram-negative and all Gram-positive bacteria. Counts of clumps of orange fluorescent cells (Gram-negative DEFT count) correlated well with colony counts of Gram-negative bacteria in samples of raw milk (r = 0.94). The use of stainless steel membrane filter supports and the addition of citrate-NaOH buffer (0.1 M, pH 3.0) during filtration enabled 10 ml samples of milk to be filtered, thereby increasing the sensitivity of the DEFT five-fold. The relationship between colony and DEFT counts with 10 ml samples was better (r = 0.90) than that using standard 2 ml samples (r = 0.88). Alternatively, these modifications in procedure allowed the preincubation time for 2 ml milk samples to be reduced from 10 to 2 min. Sonication was successful in dispersing bacterial clumps in both pure cultures and in raw milk samples to yield a bacterial count by DEFT which should give a better indication of the hygienic status and keeping quality of a product, than counts of colony forming units.  相似文献   

12.
The membrane filter (MF) method for detection and enumeration of coliform bacteria in drinking water requires that the coliforms both grow and produce a green metallic sheen when the filter is incubated on modified Endo medium at 35 degrees C for 22 h. Large numbers of noncoliform bacteria, which are enumerated by the standard plate count (SPC) technique, can interfere with the detection of coliforms on MF. This paper presents quantitative evidence from laboratory experiments on the interference of specific SPC bacteria on coliform colony sheen production on MF. Pseudomonas aeruginosa and Aeromonas hydrophila caused significant reductions in Escherichia coli sheen colony counts when present at 3,000 and 220 per filter, respectively. The Flavobacterium sp. and Bacillus sp. selected for this study from SPC did not interfere with coliform colony sheen production. Excessive crowding of E. coli and Enterobacter cloacae colonies on MF also caused a reduction in the number of colonies that produced sheen. Even when there was no crowding (14 colonies per filter), only a fraction of the E. cloacae colonies produced sheen colonies on modified Endo medium.  相似文献   

13.
Abstract A genetically modified strain of Pseudomonas fluorescens and its parent showed grossly similar decline rates following introduction into subtropical clay and sandy soils. In unplanted clay soit at pH 6.9 and 25°C, population densities declined progressively from about 108 to 103 colony forming units (cfu) g−1 dry soil over 75 days, but in unplanted sandy soil the introduced populations could not be detected after 25 days. In clay soil at pH 8.7 or 4.7, or at environmental temperature, decay rates were enhanced as compared to those at pH 6.9 and 25°C. Counts of introduced strains in clay bulk soil and in rhizosphere and rhizoplane of maize suggested that the introduced bacteria competed well with the native bacteria, and colonized the roots at about 106 cfu g−1 dry root at 25°C, over 20 days. However, rhizoplane colonization was lower at environmental temperature. The decay rate of both strains was slower in planted than in unplanted sandy soil. The population densities in the rhizosphere and rhizoplane in the sandy soil were significantly lower than those in the clay soil. Both introduced strains colonized the maize roots in both soils, using seeds coated with bacteria in 1% carboxymethyl cellulose. Introduced cells were localized at different sites along the roots of plants developing in clay soil, with higher densities in the original (near the seeds) and root hair zones as compared to the intermediate zones. No significant difference was observed between the extent of root colonization of the genetically modified strain and its parent.  相似文献   

14.
With the direct epifluorescent filter technique (DEFT), differentiation of bacteria was achieved by a modified Gram-staining procedure using acridine orange as the counterstain. The method enumerated viable Gram-negative and all Gram-positive bacteria. Counts of clumps of orange fluorescent cells (Gram-negative DEFT count) correlated well with colony counts of Gram-negative bacteria in samples of raw milk ( r = 0·94). The use of stainless steel membrane filter supports and the addition of citrate-NaOH buffer (0·1 M, pH 3·0) during filtration enabled 10 ml samples of milk to be filtered, thereby increasing the sensitivity of the DEFT five-fold. The relationship between colony and DEFT counts with 10 ml samples was better ( r = 0·90) than that using standard 2 ml samples ( r = 0·88). Alternatively, these modifications in procedure allowed the preincubation time for 2 ml milk samples to be reduced from 10 to 2 min. Sonication was successful in dispersing bacterial clumps in both pure cultures and in raw milk samples to yield a bacterial count by DEFT which should give a better indication of the hygienic status and keeping quality of a product, than counts of colony forming units.  相似文献   

15.
The identification of pathogenic bacteria in water is important for addressing preventive and treatment issues regarding health and safety. A highly sensitive and specific solid-phase sandwich ELISA procedure was developed for the detection of typhoid causing extremely lethal water borne pathogen Salmonella typhi (S. typhi) on modified isopore polycarbonate (PC) black membranes. PC membranes were chemically derivatized to generate amino groups on the surface maintaining their pysico-optico properties. Surface modified PC membranes were characterized by ATR-FTIR spectrometer, goniometer and scanning electron microscope. Polyclonal somatic 'O' type antibodies (Abs) against whole cell S. typhi were immobilized on them by following the amine glutaraldehyde chemistry. Antibody immobilized membranes captured S. typhi from buffer solution and this complex was detected colourimetrically using HRP labelled S. typhi Ab. A detection limit of 2×10(3)cells/ml of bacteria was achieved with the modified PC membranes without any pre-enrichment step as against 10(6)-10(7)CFU/ml of bacteria by typical ELISA method. The assay was demonstrated to be specific for the target bacteria when compared with other cross-reactant water borne pathogens. The intra- and inter-assay precision for 10(4) and 10(5)cells/ml was 5.3-7.4 and 10.3-19.7% respectively. The developed immunoassay for the detection of S. typhi is simple, easy to handle, sensitive specific, reproducible and cost effective in comparison with the commercially existing immunochromatographic assays.  相似文献   

16.
Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation of E. coli cells in static cultures. Additionally, surface display of Ag43 is associated with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation between E. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other gram-negative bacteria. Display of heterologous Ag43 in selected bacteria might offer opportunities for rational design of multispecies consortia where the concerted action of several bacterial species is required, e.g., waste treatment and degradation of pollutants.  相似文献   

17.
A staining method for proteins on (positively charged) nylon and nitrocellulose membranes is described. The two-step method uses cationic cacodylate iron colloid which is substituted with Tween 20 at an OD460 nm = 0.5, followed by Perls' reaction with acid potassium ferrocyanide. It stains transferred proteins deep blue with low background. The sensitivity is intermediate between that of conventional stains and AuroDye, the colloidal gold stain. This is the first sensitive staining method for proteins transferred on (positively charged) nylon membranes. These membranes have documented advantages in immunoblotting. It will therefore be a useful tool for correlating the position of bands or spots of proteins detected with overlay assays with the complete electropherogram in a duplicate protein blot.  相似文献   

18.
The electrophoretic patterns of outer membrane proteins of strains representing the biovars of Pseudomonas fluorescens and Pseudomonas putida were analyzed by gel electrophoresis. The outer membrane protein profiles were variable, and they were not useful for assigning strains to a specific biovar. However, three or four predominant outer membrane proteins migrating at 42 to 46 kDa, 33 to 38 kDa, and 20 to 22 kDa were conserved among the strains. They could be tentatively identified as OprE (44 kDa), OprF (38 kDa), OprH (21 kDa), and OprL (20.5 kDa), which are known proteins from Pseudomonas aeruginosa. A 37-kDa OprF-like protein was purified from P. fluorescens DF57 and used to raise a polyclonal antibody. In Western blot (immunoblot) analysis, this antibody reacted with OprF proteins from members of Pseudomonas rRNA homology group I but not with proteins from nonpseudomonads. The heterogeneity in M(infr) of OprF was greater among P. fluorescens strains than among P. putida strains. Immunofluorescence microscopy of intact cells demonstrated that the antibody recognized epitopes that were accessible only after unmasking by EDTA treatment. The antibody was used in a colony blotting assay to determine the percentage of rRNA homology group I pseudomonads among bacteria from the rhizosphere of barley. The bacteria were isolated on 10% tryptic soy agar, King's B agar, and the pseudomonad-specific medium Gould S1 agar. The estimate of OprF-containing CFU in rhizosphere soil obtained by colony blotting on 10% tryptic soy agar was about 2 and 14 times higher than the values obtained from King's agar and Gould S1 agar, respectively, indicating that not all fluorescent pseudomonads are scored on more specific media. The colonies reacting with the OprF antibody were verified as being rRNA homology group I pseudomonads by using the API 20NE system.  相似文献   

19.
Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically isolated bacteria in nonsterile soil, using burrowing earthworms as a biological factor to facilitate cell-to-cell contact.  相似文献   

20.
AIMS: To assess the effects of soil type and time of the year on survival of the biocontrol inoculant Pseudomonas fluorescens CHA0 under aerobic conditions in lysimeter effluent water. METHODS AND RESULTS: Effluent water was collected at different times from large outdoor lysimeters (2.5 m deep), which contained a well-drained or a poorly-drained cambisol, and inoculated with CHA0. The inoculant was monitored for 175 d by colony counts, total immunofluorescence cell counts and Kogure's viable cell counts. Cell numbers obtained with the three methods were similar. The inoculant declined exponentially in time and its population level varied considerably depending on the time of the year at which effluent water had been collected and soil type in the lysimeter. Positive correlations were found between the number of resident culturable aerobic bacteria and subsequent survival of the inoculant. CONCLUSION: The fluctuations of inoculant survival patterns correlated with differences in biological properties of lysimeter water that were related to soil type and time of the year. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that predictability of the survival of bacterial soil inoculants transported to groundwater level by heavy rainfall may be improved by taking into account key biological properties of the water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号