首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Phenological changes are well documented biological effects of current climate change but their adaptive value and demographic consequences are poorly known. Game theoretical models have shown that deviating from the fitness-maximising phenology can be evolutionary stable under frequency-dependent selection. We study eco-evolutionary responses to climate change when the historical phenology is mismatched in this way. For illustration we model adaptation of arrival dates in migratory birds that compete for territories at their breeding grounds. We simulate climate change by shifting the timing and the length of the favourable season for breeding. We show that initial trends in changes of population densities can be either reinforced or counteracted during the ensuing evolutionary adaptation. We find in total seven qualitatively different population trajectories during the transition to a new evolutionary equilibrium. This surprising diversity of eco-evolutionary responses provides adaptive explanations to the observed variation in phenological responses to recent climate change.  相似文献   

2.
Evidence for temperature adaptation in Daphnia magna was inferred from variation in the shape of temperature reaction norms for somatic growth rate, a fitness‐related trait. Ex‐ephippial clones from eight populations across Europe were grown under standardized conditions after preacclimation at five temperatures (17–29 °C). Significant variation for grand mean growth rates occurred both within populations (among clones) and between populations. Genetic variation for reaction norm shape was found within populations, with temperature‐dependent trade‐offs in clone relative fitness. However, the population average responses to temperature were similar, following approximately parallel reaction norms. The among‐population variation is not evidence for temperature adaptation. Lack of temperature adaptation at the population level may be a feature of intermittent populations where environmentally terminated diapause can entrain the planktonic stage of the life‐history within a similar range of temperatures.  相似文献   

3.
    
Individuals in free‐living animal populations generally differ substantially in reproductive success, lifespan and other fitness‐related traits, but the molecular mechanisms underlying this variation are poorly understood. Telomere length and dynamics are candidate traits explaining this variation, as long telomeres predict a higher survival probability and telomere loss has been shown to reflect experienced “life stress.” However, telomere dynamics among very long‐lived species are unresolved. Additionally, it is generally not well understood how telomeres relate to reproductive success or sex. We measured telomere length and dynamics in erythrocytes to assess their relationship to age, sex and reproduction in Cory's shearwaters (Calonectris borealis), a long‐lived seabird, in the context of a long‐term study. Adult males had on average 231 bp longer telomeres than females, independent of age. In females, telomere length changed relatively little with age, whereas male telomere length declined significantly. Telomere shortening within males from one year to the next was three times higher than the interannual shortening rate based on cross‐sectional data of males. Past long‐term reproductive success was sex‐specifically reflected in age‐corrected telomere length: males with on average high fledgling production were characterized by shorter telomeres, whereas successful females had longer telomeres, and we discuss hypotheses that may explain this contrast. In conclusion, telomere length and dynamics in relation to age and reproduction are sex‐dependent in Cory's shearwaters and these findings contribute to our understanding of what characterises individual variation in fitness.  相似文献   

4.
    
We studied the fitness effects of animal personality by measuring activity and its relation to survival in the marine isopod Idotea balthica. We asked (1) whether activity could be considered to be a personality trait, (2) whether this trait is connected to survival, and (3) whether personality and survival exhibit sex differences. We found that activity fulfilled the criteria of personality as individuals had consistent between‐individual differences over time and across situations. Consistent individual differences in activity were associated with fitness as the survival probability of active individuals was lower, but this did not depend on sex. Our results demonstrate that personality exists in I. balthica and support recent suggestions that the association between personality and life‐history traits is a central component in mediating animal personality.  相似文献   

5.
动物生活史进化理论研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
综述了生活史性状、生活史对策、权衡、适合度及进化种群统计学等动物生活史进化领域的进展。权衡是生活史性状之间相互联系的纽带,分为生理权衡与进化权衡。适合度是相对的,与个体所处的特定环境条件有关,性状进化与适合度之间关系紧密。适合度是生活史进化理论研究的焦点。探讨动物生活史对策的理论很多,影响最大的是MacArthur和Wilson提出的r对策及K对策理论。随年龄的增长,动物存活率及繁殖率逐步下降的过程,称为衰老;解释衰老的进化理论主要有突变-选择平衡假设和多效对抗假设。进化种群统计学将种群统计学应用于生活史进化研究,为探讨表型适合度的进化提供了有效的手段。将进化种群统计学、数量遗传学及特定种系效应理论进行整合,建立完整的动物生活史进化综合理论体系,是当代此领域的最大挑战。  相似文献   

6.
    
Annual reproductive surveys monitored nesting location, reproductive success and the age and size of individually tagged male smallmouth bass Micropterus dolomieu that reproduced in Millers Lake, a 45 ha widening of the Mississippi River, Ontario, and in a 1·5 km pool and riffle section of the river directly upstream. The vast majority of males displayed fidelity to either the river or the lake as reproductive habitat throughout their lifetimes. Nearly, half of the males that reproduced in successive years exhibited strong nest‐site fidelity by nesting within 20 m of their previous year’s nest site. In most years, when compared to those in the lake, reproductive males in the river differed significantly in reproductive characteristics including age and size at maturation and nesting success rates. A 3 year telemetry project identified two distinct habitat use patterns: lake‐resident fish remained in the lake throughout the year and potamodromous individuals migrated from the lake to upriver spawning habitat in the spring and then returned to the lake prior to the onset of winter. Integration of habitat use and reproductive data suggests that there are significant differences in the life‐history strategies of fish that reproduce in the river v. the lake.  相似文献   

7.
    
Phenological changes in key seasonally expressed life‐history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long‐term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955–2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long‐distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross‐correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life‐history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long‐term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected.  相似文献   

8.
Although central to understanding life‐history evolution, the relationship between lifetime reproductive success and longevity remains uncertain in many organisms. In social insects, no studies have reported estimates of queens’ lifetime reproductive success and longevity within populations, despite the importance of understanding how sociality and associated within‐group conflict affect life‐history traits. To address this issue, we studied two samples of colonies of the annual bumblebee, Bombus terrestris audax, reared from wild‐caught queens from a single population. In both samples, queens’ lifetime reproductive success, measured as either queens’ inclusive fitness or as total biomass of queen‐produced sexuals (new queens and males), was significantly positively associated with queen longevity, measured from the day the first worker was produced. We suggest that a positive relationship between reproductive success and longevity was inherited from nonsocial ancestors showing parental care and maintained, at least in part, because the presence of workers buffers queens against extrinsic mortality.  相似文献   

9.
    
Telomere length (TL) is a candidate biomarker of ageing and phenotypic quality, but little is known of the (physiological) causes of TL variation. We previously showed that individual common terns Sterna hirundo with high reproductive success had short telomeres independent of age, and this pattern was particularly strong in the longer telomeres of the within‐individual TL distribution. To test whether this relation can be attributed to effects of reproductive effort, we investigated baseline corticosterone in relation to reproductive success (number of fledglings) and TL. In this context, we assume that variation in baseline corticosterone can be interpreted as index of energy expenditure and allostatic load. Males with higher corticosterone levels during incubation, compared between and within individuals, achieved higher reproductive success and had shorter telomeres. The effect on telomeres was more pronounced in corticosterone measured later in incubation and in the longer telomeres of the within‐individual TL distribution. Female corticosterone level during incubation was neither related to reproductive success nor to TL. That we observed these effects only in males mirrors different parental roles during reproduction in the common tern, where males do most of the chick provisioning. The negative association between reproductive success and TL suggests individual differences in reproductive effort as reflected in, or mediated by, baseline corticosterone. We see this result as a promising step towards unravelling the physiological causes of variation in TL and the costs of reproduction.  相似文献   

10.
    
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

11.
    
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals.  相似文献   

12.
  总被引:1,自引:0,他引:1  
A trade‐off between current and future fitness potentially explains variation in life‐history strategies. A proposed mechanism behind this is parasite‐mediated reproductive costs: individuals that allocate more resources to reproduction have fewer to allocate to defence against parasites, reducing future fitness. We examined how reproduction influenced faecal egg counts (FEC) of strongyle nematodes using data collected between 1989 and 2008 from a wild population of Soay sheep in the St. Kilda archipelago, Scotland (741 individuals). Increased reproduction was associated with increased FEC during the lambing season: females that gave birth, and particularly those that weaned a lamb, had higher FEC than females that failed to reproduce. Structural equation modelling revealed future reproductive costs: a positive effect of reproduction on spring FEC and a negative effect on summer body weight were negatively associated with overwinter survival. Overall, we provide evidence that parasite resistance and body weight are important mediators of survival costs of reproduction.  相似文献   

13.
Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change.  相似文献   

14.
    
Animals exhibit varied life‐history traits that reflect adaptive responses to their environments. For Arctic‐breeding birds, traits related to diet, egg nutrient allocation, clutch size, and chick growth are predicted to be under increasing selection pressure due to rapid climate change and increasing environmental variability across high‐latitude regions. We compared four migratory birds (black brant [Branta bernicla nigricans], lesser snow geese [Chen caerulescens caerulescens], semipalmated sandpipers [Calidris pusilla], and Lapland longspurs [Calcarius lapponicus]) with varied life histories at an Arctic site in Alaska, USA, to understand how life‐history traits help moderate environmental variability across different phases of the reproductive cycle. We monitored aspects of reproductive performance related to the timing of breeding, reproductive investment, and chick growth from 2011 to 2018. In response to early snowmelt and warm temperatures, semipalmated sandpipers advanced their site arrival and bred in higher numbers, while brant and snow geese increased clutch sizes; all four species advanced their nest initiation dates. During chick rearing, longspur nestlings were relatively resilient to environmental variation, whereas warmer temperatures increased the growth rates of sandpiper chicks but reduced growth rates of snow goose goslings. These responses generally aligned with traits along the capital‐income spectrum of nutrient acquisition and altricial–precocial modes of chick growth. Under a warming climate, the ability to mobilize endogenous reserves likely provides geese with relative flexibility to adjust the timing of breeding and the size of clutches. Higher temperatures, however, may negatively affect the quality of herbaceous foods and slow gosling growth. Species may possess traits that are beneficial during one phase of the reproductive cycle and others that may be detrimental at another phase, uneven responses that may be amplified with future climate warming. These results underscore the need to consider multiple phases of the reproductive cycle when assessing the effects of environmental variability on Arctic‐breeding birds.  相似文献   

15.
    
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator‐induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high‐ and low‐predation environments. We reared full‐siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high‐predation ecotype. However, when reared in the absence of predator cues, guppies from high‐ and low‐predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high‐ versus low‐predation environments. Thus, divergence in plasticity is due to phenotypic differences between high‐ and low‐predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by‐product of adaptation to the derived environment.  相似文献   

16.
    
Although life histories are shaped by temperature and predation, their joint influence on the interdependence of life‐history traits is poorly understood. Shifts in one life‐history trait often necessitate shifts in another—structured in some cases by trade‐offs—leading to differing life‐history strategies among environments. The offspring size–number trade‐off connects three traits whereby a constant reproductive allocation (R) constrains how the number (O) and size (S) of offspring change. Increasing temperature and size‐independent predation decrease size at and time to reproduction which can lower R through reduced time for resource accrual or size‐constrained fecundity. We investigated how O, S, and R in a clonal population of Daphnia magna change across their first three clutches with temperature and size‐independent predation risk. Early in ontogeny, increased temperature moved O and S along a trade‐off curve (constant R) toward fewer larger offspring. Later in ontogeny, increased temperature reduced R in the no‐predator treatment through disproportionate decreases in O relative to S. In the predation treatment, R likewise decreased at warmer temperatures but to a lesser degree and more readily traded off S for O whereby the third clutch showed a constant allocation strategy of O versus S with decreasing R. Ontogenetic shifts in S and O rotated in a counterclockwise fashion as temperature increased and more drastically under risk of predation. These results show that predation risk can alter the temperature dependence of traits and their interactions through trade‐offs.  相似文献   

17.
    
Four Atlantic salmon Salmo salar stocks in the Baltic Sea, varying in their breeding history, were studied for changes in life‐history traits over the years 1972–1995. Total length (LT) at age of captured (LTC) fish had increased throughout the study period, partly due to increased temperature and increased LT at release, (LTR) but also due to remaining cohort effects that could represent unaccounted environmental or genetic change. Simultaneously, maturation probabilities controlled for water temperature, LTC and LTR had increased in all stocks. The least change was observed in the River Tornionjoki S. salar that was subject only to supportive stockings originating from wild parents. These results suggest a long‐term divergence between semi‐natural and broodstock‐based S. salar stocks. Increased LT at age explained advanced maturation only marginally, and it remains an open question to what extent the generally increased probabilities to mature at early age reflected underlying genetic changes.  相似文献   

18.
19.
    
For ectotherms, environmental temperatures influence numerous life history characteristics, and the body temperatures (Tb) selected by individuals can affect offspring fitness and parental survival. Reproductive trade‐offs may therefore ensue for gravid females, because temperatures conducive to embryonic development may compromise females' body condition. We tested whether reproduction influenced thermoregulation in female Arizona Bark Scorpions (Centruroides sculpturatus). We predicted that gravid females select higher Tb and thermoregulate more precisely than nonreproductive females. Gravid C. sculpturatus gain body mass throughout gestation, which exposes larger portions of their pleural membrane, possibly increasing their rates of transcuticular water loss in arid environments. Accordingly, we tested whether gravid C. sculpturatus lose water faster than nonreproductive females. We determined the preferred Tb of female scorpions in a thermal gradient and measured water loss rates using flow‐through respirometry. Gravid females preferred significantly higher Tb than nonreproductive females, suggesting that gravid C. sculpturatus alter their thermoregulatory behaviour to promote offspring fitness. However, all scorpions thermoregulated with equal precision, perhaps because arid conditions create selective pressure on all females to thermoregulate effectively. Gravid females lost water faster than nonreproductive animals, indicating that greater exposure of the pleural membrane during gestation enhances the desiccation risk of reproductive females. Our findings suggest that gravid C. sculpturatus experience a trade‐off, whereby selection of higher Tb and increased mass during gestation increase females' susceptibility to water loss, and thus their mortality risk. Elucidating the mechanisms that influence thermal preferences may reveal how reproductive trade‐offs shape the life history of ectotherms in arid environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号