首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
A unified kinetic pathway for the enzyme-catalyzed polymerization and degradation of poly(ε-caprolactone) was developed. This model tracks the complete distribution of individual chain lengths, both enzyme-bound and in solution, and successfully predicts monomer conversion and the molecular mass distribution as a function of reaction time. As compared to reported experimental data for polymerization reactions, modeled kinetics generate similar trends, with ring-opening rates and water concentration as key factors to controlling molecular mass distributions. Water is critically important by dictating the number of linear chains in solution, shifting the molecular mass distribution at which propagation and degradation equilibrate. For the enzymatic degradation of poly(ε-caprolactone), the final reaction product is also consistent with the equilibrium dictated by the propagation and degradation rates. When the modeling framework described here is used, further experiments can be designed to isolate key reaction steps and provide methods for improving the efficiency of enzyme polymerization.  相似文献   

2.
Morphogen gradients have been associated with differential gene expression and are implicated in the triggering and regulation of developmental biological processes. This study focused on creating morphogenic gradients through the thickness of hydrospun scaffolds. Specifically, electrospun poly(ε-caprolactone) fibers were loaded with all-trans-retinoic acid (ATRA), and designed to release ATRA at a predetermined rate. Multilayered scaffolds designed to present varied initial ATRA concentrations were then exposed to flow conditions in a bioreactor. Gradient formation was verified by a simple convection-diffusion mathematical model approving establishment of a continuous solute gradient across the scaffold. The biological value of the designed gradients in scaffolds was evaluated by monitoring the fate of murine embryonal carcinoma cells embedded within the scaffolds. Cell differentiation within the different layers matched the predictions set forth by the theoretical model, in accordance with the ATRA gradient formed across the scaffold. This tool bears powerful potential in establishing in vitro simulation models for better understanding the inner workings of the embryo.  相似文献   

3.
Wu DQ  Sun YX  Xu XD  Cheng SX  Zhang XZ  Zhuo RX 《Biomacromolecules》2008,9(4):1155-1162
Hydrogels with pH-sensitive poly(acrylic acid) (PAAc) chains and biodegradable acryloyl-poly(-caprolactone)-2-hydroxylethyl methacrylate (AC-PCL-HEMA) chains were designed and synthesized. The morphology of hydrogel was observed by scanning electron microscopy. The degradation of the hydrogel in the presence of Pseudomonas lipase was studied. The in vitro release of bovine serum albumin from the hydrogel was investigated. Cytotoxicity study shows that the AC-PCL-HEMA/AAc copolymer exhibits good biocompatibility. Cell adhesion and migration into the hydrogel networks were evaluated by using different cell lines. The hydrogel with a lower cross-linking density and a larger pore size exhibited a better performance for cells migration.  相似文献   

4.
Gu X  Wu J  Mather PT 《Biomacromolecules》2011,12(8):3066-3077
In this Article, we studied the enzymatic hydrolytic biodegradation behavior of a novel multiblock thermoplastic polyurethane (TPU) system, which incorporates polyhedral oligomeric silsesquioxane (POSS) into linear biodegradable thermoplastic polyurethanes containing poly(ε-caproactone) (PCL) and polyethylene glycol (PEG) blocks. The biodegradation behavior of POSS-PCL-PEG TPUs was characterized by proton nuclear magnetic resonance spectroscopy ((1)H NMR), differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and wavelength dispersive X-ray spectrometry (WDS) after enduring 22-day accelerated enzymatic hydrolytic degradation tests. POSS incorporation significantly suppressed in vitro enzymatic hydrolytic degradation of PCL-PEG-based multiblock TPUs by a surface passivation mechanism. WDS observations revealed that the covalently bonded POSS moieties developed a near-continuous and robust POSS-layer after initial degradation, which prevented ester bonds of PCL from enzymatic attack, thereby inhibiting further degradation. These striking results provide a new strategy to fabricate the polyester-based biostable thermoplastic polyurethanes (TPUs) of potential use in long-term surgical implants.  相似文献   

5.
Nanofibers(NFs)have been widely used in tissue engineering such as wound healing.In this work,the antibacterial ZnO quantum dots(ZnO QDs)have been incorporated into the biocompatible poly(ε-caprolactone)/collagen(PCL/Col)fibrous scaffolds for wound healing.The as-fabricated PCL-Col/ZnO fibrous scaffolds exhibited good swelling,antibacterial activity,and biodegradation behaviors,which were beneficial for the applications as a wound dressing.Moreover,the PCL-Col/ZnO fibrous scaffolds showed excellent cytocompatibility for promoting cell proliferation.The resultant PCL-Col/ZnO fibrous scaffolds containing vascular endothelial growth factor(VEGF)also exhibited promoted wound-healing effect through promoting expression of transforming growth factor-β(TGF-β)and the vascular factor(CD31)in tissues in the early stages of wound healing.This new electrospun fibrous scaffolds with wound-healing promotion and antibacterial property should be convenient for treating wound healing.  相似文献   

6.
An innovative type of triblock copolymer that maintains and even increases the mechanical properties of poly(l-lactide) (PLLA) and poly(ε-caprolactone) (PCL) with a controlled, predictable, and rapid degradation profile has been synthesized. Elastic triblock copolymers were formed from the hydrophobic and crystalline PLLA and PCL with an amorphous and hydrophilic middle block of poly(but-2-ene-1,4-diyl malonate) (PBM). The polymers were subjected to degradation in PBS at 37 °C for up to 91 days. Prior to degradation, ductility of the PLLA-PBM-PLLA was approximately 4 times greater than that of the homopolymer of PLLA, whereas the modulus and tensile stress at break were unchanged. A rapid initial hydrolysis in the amorphous PBM middle block changed the microstructure from triblock to diblock with a significant reduction in ductility and molecular weight. The macromolecular structure of the triblock copolymer of PLLA and PBM generates a more flexible and easier material to handle during implant, with the advantage of a customized degradation profile, demonstrating its potential use in future biomedical applications.  相似文献   

7.
Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.  相似文献   

8.
Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair.  相似文献   

9.
Substrate topography influences cell shape, direction and rate of migration, nucleus shape, and gene expression levels. This influence is commonly studied using substrates with predefined surface structure and chemical composition. In the current work, we studied the state of HaCaT keratinocyte nuclei and actin cytoskeleton on poly(ε-caprolactone) scaffolds obtained by electrospinning. Two types of fibrous scaffolds were prepared and characterized. In the random scaffolds, the fibers were arranged in a nonsystematic fashion; however, most of the fibers had the same direction in the aligned scaffolds. When cultured on the aligned scaffolds, HaCaT cells exhibited oriented actin filaments and had more elongated nuclei.  相似文献   

10.
hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(ε-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, integrin1β, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove’s Modified Dulbecco’s Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.  相似文献   

11.
α-Acetal, ω-alkyne poly(ethylene oxide) was synthesized as building block of glycoconjugated poly(ε-caprolactone)-graft-poly(ethylene oxide) (PCL-g-PEO) copolymers. The alkyne group is indeed instrumental for the PEGylation of a poly(α-azido-ε-caprolactone-co-ε-caprolactone) copolymer by the Huisgen's 1,3 dipolar cycloaddition, i.e., a click reaction. Moreover, deprotection of the acetal end-group of the hydrophilic PEO grafts followed by reductive amination of the accordingly formed aldehyde with an aminated sugar is a valuable strategy of glycoconjugation of the graft copolymer, whose micelles are then potential. A model molecule (fluoresceinamine) was first considered in order to optimize the experimental conditions for the reductive amination. These conditions were then extended to the decoration of the graft copolymer micelles with mannose, which is a targeting agent of dendritic cells and macrophages. The bioavailability of the sugar units at the surface of micelles was investigated by surface plasmon resonance (SPR). The same question was addressed to nanoparticles stabilized by the graft copolymer. Enzyme linked lectin assay (ELLA) confirmed the availability of mannose at the nanoparticle surface.  相似文献   

12.
Yan J  Ye Z  Chen M  Liu Z  Xiao Y  Zhang Y  Zhou Y  Tan W  Lang M 《Biomacromolecules》2011,12(7):2562-2572
This study aimed to optimize poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL)-based amphiphilic block copolymers for achieving a better micellar drug delivery system (DDS) with improved solubilization and delivery of doxorubicin (DOX). First, the Flory-Huggins interaction parameters between DOX and the core-forming segments [i.e., poly(ε-caprolactone) (PCL) and poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (P(CL-co-CABCL))] was calculated to assess the drug-polymer compatibility. The results indicated a better compatibility between DOX and P(CL-co-CABCL) than that between DOX and PCL, motivating the synthesis of monomethoxy-poly(ethylene glycol)-b-poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (mPEG-b-P(CL-co-CABCL)) block copolymer. Second, two novel block copolymers of mPEG-b-P(CL-co-CABCL) with different compositions were prepared via ring-opening polymerization of CL and CABCL using mPEG as a macroinitiator and characterized by (1)H NMR, FT-IR, GPC, WAXD, and DSC techniques. It was found that the introduction of CABCL decreased the crystallinity of mPEG-b-PCL copolymer. Micellar formation of the copolymers in aqueous solution was investigated with fluorescence spectroscopy, DLS and TEM. mPEG-b-P(CL-co-CABCL) copolymers had a lower critical micelle concentration (CMC) than mPEG-b-PCL and subsequently led to an improved stability of prepared micelles. Furthermore, both higher loading capacity and slower in vitro release of DOX were observed for micelles of copolymers with increased content of CABCL, attributed to both improved drug-core compatibility and favorable amorphous core structure. Meanwhile, DOX-loaded micelles facilitated better uptake of DOX by HepG2 cells and were mainly retained in the cytosol, whereas free DOX accumulated more in the nuclei. However, possibly because of the slower intracellular release of DOX, DOX-loaded micelles were less potent in inhibiting cell proliferation than free DOX in vitro. Taken together, the introduction of CABCL in the core-forming block of mPEG-b-PCL resulted in micelles with superior properties, which hold great promise for drug delivery applications.  相似文献   

13.
One of the key tenets of tissue engineering is to develop scaffold materials with favorable biodegradability, surface properties, outstanding mechanical strength and controlled drug release property. In this study, we generated core-sheath nanofibers composed of poly (?-caprolactone) (PCL) and silk fibroin (SF) blends via emulsion electrospinning. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle and tensile measurements. An in vitro FITC release study was conducted to evaluate sustained release potential of the core-sheath structured nanofibers. We found that the conformation of SF contained in PCL/SF composite nanofibers was transformed from random coil to β-sheet when treated with methanol, leading to improved crystallinity and tensile strength of nanofibrous scaffolds. The hydrophobicity and diameter of nanofibers decreased when we increased the content of SF in PCL/SF composite nanofibers. Furthermore, we evaluated the potential of fabricated PCL/SF composite nanofibers as scaffold in vitro. The results confirmed that fabricated PCL/SF scaffolds improved cell attachment and proliferation. Our results demonstrated the feasibility to generate core-sheath nanofibers composed of PCL and SF using a single-nozzle technique. The produced nanofibrous scaffolds with sustained drug release have potential application in tissue engineering.  相似文献   

14.
An ideal biomaterial in regenerative medicine should be able to regulate the stem cell proliferation without the loss of its pluripotency. Chrysin (Chr) is a naturally occurring flavone with a wide spectrum of biological functions including anti-inflammatory and anti-oxidant properties. The present study describes the influence of Chr-loaded nanofibrous mats on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). For this purpose, Chr-loaded poly (ε-caprolactone)/poly (ethylene glycol) (PCL/PEG) nanofibrous mats were produced via electrospinning process and the successful fabrication of these bioactive mats was confirmed by field emission scanning electron microscopy (FE-SEM) and fourier transform infrared spectroscopy. ADSCs were seeded on the nanofibers and their morphology, viability, and stemness expression were analyzed using FE-SEM, MTT, and qPCR assays after 2 weeks of incubation, respectively. The results display that ADSCs exhibit better adhesion and significantly increased viability on the Chr-loaded PCL/PEG nanofibrous mats in relative to the PCL/PEG nanofibers and tissue culture polystyrene. The greater viability of ADSCs on Chr based nanofibers was further confirmed by higher expression levels of stemness markers Sox-2, Nanog, Oct-4, and Rex-1. These findings demonstrate that Chr-loaded PCL/PEG electrospun nanofibrous mats can be applied to improve cell adhesion and proliferation while concurrently preserving the stemness of ADSCs, thus representing a hopeful potential for application in stem cell therapy strategies.  相似文献   

15.
A biocompatible and elastomeric nanofibrous scaffold is electrospun from a blend of poly(1,8-octanediol-co-citrate) [POC] and poly(L-lactic acid) -co-poly-(3-caprolactone) [PLCL] for application as a bioengineered patch for cardiac tissue engineering. The characterization of the scaffolds was carried out by Fourier transform infra red spectroscopy, scanning electron microscopy (SEM), and tensile measurement. The mechanical properties of the scaffolds are studied with regard to the percentage of POC incorporated with PLCL and the results of the study showed that the mechanical property and degradation behavior of the composites can be tuned with respect to the concentration of POC blended with PLCL. The composite scaffolds with POC: PLCL weight ratio of 40:60 [POC/PLCL4060] was found to have a tensile strength of 1.04 ± 0.11 MPa and Young's Modulus of 0.51 ± 0.10 MPa, comparable to the native cardiac tissue. The proliferation of cardiac myoblast cells on the electrospun POC/PLCL scaffolds was found to increase from Days 2 to 8, with the increasing concentration of POC in the composite. The morphology and cytoskeletal observation of the cells also demonstrated the biocompatibility of the POC containing scaffolds. Electrospun POC/PLCL4060 nanofibers are promising elastomeric substrates that might provide the necessary mechanical cues to cardiac muscle cells for regeneration of the heart.  相似文献   

16.
A thermo-responsive poly{γ-2-[2-(2-methoxyethoxy)ethoxy]ethoxy-ε-caprolactone}-b-poly(γ-octyloxy-ε-caprolactone) (PMEEECL-b-POCTCL) diblock copolymer was synthesized by ring-opening polymerization using tin octanoate (Sn(Oct)(2)) catalyst and a fluorescent dansyl initiator. The PMEEECL-b-POCTCL had a lower critical solution temperature (LCST) of 38 °C, and it was employed to prepare thermally responsive micelles. Nile Red and Doxorubicin (DOX) were loaded into the micelles, and the micellar stability and drug carrying ability were investigated. The size and the morphology of the cargo-loaded micelles were determined by DLS, AFM, and TEM. The Nile-Red-loaded polymeric micelles were found to be stable in the presence of both fetal bovine serum and bovine serum albumin over a 72 h period and displayed thermo-responsive in vitro drug release. The blank micelles showed a low cytotoxicity. As comparison, the micelles loaded with DOX showed a much higher in vitro cytotoxicity against MCF-7 human breast cancer cell line when the incubation temperature was elevated above the LCST. Confocal laser scanning microscopy was used to study the cellular uptake and showed that the DOX-loaded micelles were internalized into the cells via an endocytosis pathway.  相似文献   

17.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

18.
In this study, fungi isolated from soil were screened for their ability to form clear zones on agar plates with emulsified poly(ε-caprolactone) (PCL). The most active strain, designated as DSYD05, was identified as Penicillium oxalicum on the basis of morphological characteristics and phylogenetic analysis. Mutant DSYD05-1, obtained by ultraviolet-light mutagenesis from strain DSYD05, was more effective in PCL degradation. In liquid cultures of the mutant strain with PCL emulsion, DSYD05-1 showed the highest PCL-degrading activity after 4?days of cultivation. The products of PCL degradation were analysed by mass spectrometry; the results indicated that 6-hydroxyhexanoic acid was produced and assimilated during cultivation. The degradation of PCL film by DSYD05-1 was observed by scanning electron microscopy, and was indicative of a three-stage degradation process. The degradation of amorphous parts of the film preceded that of the crystalline center and then the peripheral crystalline regions. In addition, DSYD05-1 showed a wide range of substrate specificity, with capability to degrade PCL, poly(β-hydroxybutyrate), and poly(butylene succinate), but not poly(lactic acid), indicating that the strain could have potential for application in the treatment or recycling of bio-plastic wastes.  相似文献   

19.
Neurite outgrowth from endogenous or transplanted cells is important for neural regeneration following nerve tissue injury. Modified substrates often provide better environments for cell adhesion and neurite outgrowth. This study was conducted to determine if MWCNT (multiwalled carbon nanotube)-coated electrospun PLCL [poly (l-lactic acid-co-3-caprolactone)] nanofibres improved the neurite outgrowth of PC-12 cells. To accomplish this, two groups, PC-12 cells in either uncoated PLCL scaffolds or MWCNT-coated PLCL scaffolds were cultured for 9 days. MWCNT-coated PLCL scaffolds showed improved adhesion, proliferation and neurite outgrowth of PC-12 cells. These findings suggest that MWCNT-coated nanofibrous scaffolds may be an attractive platform for cell transplantation application in neural tissue engineering.  相似文献   

20.
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(l-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号