首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gut microbiomes perform essential services for their hosts, including helping them to digest food and manage pathogens and parasites. Performing these services requires a diverse and constantly changing set of metabolic functions from the bacteria in the microbiome. The metabolic repertoire of the microbiome is ultimately dependent on the outcomes of the ecological interactions of its member microbes, as these interactions in part determine the taxonomic composition of the microbiome. The ecological processes that underpin the microbiome's ability to handle a variety of metabolic challenges might involve rapid turnover of the gut microbiome in response to new metabolic challenges, or it might entail maintaining sufficient diversity in the microbiome that any new metabolic demands can be met from an existing set of bacteria. To differentiate between these scenarios, we examine the gut bacteria and resident eukaryotes of two generalist‐insectivore lizards, while simultaneously identifying the arthropod prey each lizard was digesting at the time of sampling. We find that the cohorts of bacteria that occur significantly more or less often than expected with arthropod diet items or eukaryotes include bacterial species that are highly similar to each other metabolically. This pattern in the bacterial microbiome could represent an early step in the taxonomic shifts in bacterial microbiome that occur when host lineages change their diet niche over evolutionary timescales.  相似文献   

2.
The metabolic capabilities of many environmentally and medically important microbes can be quantitatively explored using systems biology approaches to metabolic networks. Yet, as we learn more about the complex microbe-microbe and microbe-environment interactions in microbial communities, it is important to understand whether and how system-level approaches can be extended to the ecosystem level. Here we summarize recent work that addresses these challenges at multiple scales, starting from two-species natural and synthetic ecology models, up to biosphere-level approaches. Among the many fascinating open challenges in this field is whether the integration of high throughput sequencing methods and mathematical models will help us capture emerging principles of ecosystem-level metabolic organization and evolution.  相似文献   

3.
Bacteria are a globally sustainable source of fixed nitrogen, which is essential for life and crucial for modern agriculture. Many nitrogen-fixing bacteria are agriculturally important, including bacteria known as rhizobia that participate in growth-promoting symbioses with legume plants throughout the world. To be effective symbionts, rhizobia must overcome multiple environmental challenges: from surviving in the soil, to transitioning to the plant environment, to maintaining high metabolic activity within root nodules. Climate change threatens to exacerbate these challenges, especially through fluctuations in soil water potential. Understanding how rhizobia cope with environmental stress is crucial for maintaining agricultural yields in the coming century. The bacterial outer membrane is the first line of defence against physical and chemical environmental stresses, and lipids play a crucial role in determining the robustness of the outer membrane. In particular, structural remodelling of lipid A and sterol-analogues known as hopanoids are instrumental in stress acclimation. Here, we discuss how the unique outer membrane lipid composition of rhizobia may underpin their resilience in the face of increasing osmotic stress expected due to climate change, illustrating the importance of studying microbial membranes and highlighting potential avenues towards more sustainable soil additives.  相似文献   

4.
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.Subject terms: Microbial ecology, Microbial ecology, Microbial ecology  相似文献   

5.
At the present time we know little about how microbial communities function in their natural habitats. For example, how do microorganisms interact with each other and their physical and chemical surroundings and respond to environmental perturbations? We might begin to answer these questions if we could monitor the ways in which metabolic roles are partitioned amongst members as microbial communities assemble, determine how resources such as carbon, nitrogen, and energy are allocated into metabolic pathways, and understand the mechanisms by which organisms and communities respond to changes in their surroundings. Because many organisms cannot be cultivated, and given that the metabolisms of those growing in monoculture are likely to differ from those of organisms growing as part of consortia, it is vital to develop methods to study microbial communities in situ. Chemoautotrophic biofilms growing in mine tunnels hundreds of meters underground drive pyrite (FeS(2)) dissolution and acid and metal release, creating habitats that select for a small number of organism types. The geochemical and microbial simplicity of these systems, the significant biomass, and clearly defined biological-inorganic feedbacks make these ecosystem microcosms ideal for development of methods for the study of uncultivated microbial consortia. Our approach begins with the acquisition of genomic data from biofilms that are sampled over time and in different growth conditions. We have demonstrated that it is possible to assemble shotgun sequence data to reveal the gene complement of the dominant community members and to use these data to confidently identify a significant fraction of proteins from the dominant organisms by mass spectrometry (MS)-based proteomics. However, there are technical obstacles currently restricting this type of "proteogenomic" analysis. Composite genomic sequences assembled from environmental data from natural microbial communities do not capture the full range of genetic potential of the associated populations. Thus, it is necessary to develop bioinformatics approaches to generate relatively comprehensive gene inventories for each organism type. These inventories are critical for expression and functional analyses. In proteomic studies, for example, peptides that differ from those predicted from gene sequences can be measured, but they generally cannot be identified by database matching, even if the difference is only a single amino acid residue. Furthermore, many of the identified proteins have no known function. We propose that these challenges can be addressed by development of proteogenomic, biochemical, and geochemical methods that will be initially deployed in a simple, natural model ecosystem. The resulting approach should be broadly applicable and will enhance the utility and significance of genomic data from isolates and consortia for study of organisms in many habitats. Solutions draining pyrite-rich deposits are referred to as acid mine drainage (AMD). AMD is a very prevalent, international environmental problem associated with energy and metal resources. The biological-mineralogical interactions that define these systems can be harnessed for energy-efficient metal recovery and removal of sulfur from coal. The detailed understanding of microbial ecology and ecosystem dynamics resulting from the proposed work will provide a scientific foundation for dealing with the environmental challenges and technological opportunities, and yield new methods for analysis of more complex natural communities.  相似文献   

6.
The vast majority of Dermaptera are free-living and oviparous, i.e., females lay eggs within which embryonic development occurs until the larva hatches. In contrast, in the epizoic dermapteran Arixenia esau, eggs are retained within mother’s body and the embryos and first instar larvae develop inside her reproductive system. Such a reproductive strategy poses many physiological challenges for a mother, one of which is the removal of metabolic waste generated by the developing offspring. Here, we examine how the Arixenia females cope with this challenge by analyzing features of the developing larval excretory system. Our comparative analyses of the early and late first instar larvae revealed characteristic modifications in the cellular architecture of the Malpighian tubules, indicating that these organs are functional. The results of the electron probe microanalyses suggest additionally that the larval Malpighian tubules are mainly involved in maintaining ion homeostasis. We also found that the lumen of the larval alimentary track is occluded by a cellular diaphragm at the midgut-hindgut junction and that cells of the diaphragm accumulate metabolic compounds. Such an organization of the larval gut apparently prevents fouling of the mother’s organism with the offspring metabolic waste and therefore can be regarded as an adaptation for viviparity.  相似文献   

7.
8.
We take a snapshot of the recent understanding of bacterial metabolism and the bacterial‐host metabolic interplay during infection, and highlight key outcomes and challenges for the practical implementation of bacterial metabolic modelling computational tools in the pathogenesis field.

Once relegated to the supply of energy and biosynthetic precursors, it is now indubitable that metabolism mediates most of physiological processes. In the context of bacterial–host interactions where virulence is the outcome (commonly termed bacterial pathogenesis) metabolism expands far beyond its canonical role in bacterial proliferation. In addition to all sorts of recognized molecular determinants or virulence factors (toxins, flagella, translocated effectors, adhesins, invasins, etc.), bacterial pathogens are equipped with specific metabolic traits to circumvent immune defenses and antimicrobial killing, thus facilitating colonization and proliferation within their hosts. As the implementation of high‐throughput technologies elevates the pathogenesis field to the era of big data, it concurrently creates considerable challenges for our ability to interpret large data sets and identify factors that impact infectious processes. Metabolic modelling is emerging as a powerful tool allowing the integration and coherent organization of large data sets into the context of biological networks providing non‐intuitive insights on biological systems that experimental analysis alone cannot provide. Here, we take a snapshot of the recent understanding of bacterial metabolism and the bacterial–host metabolic interplay during infection, and highlight key outcomes and challenges for the practical implementation of bacterial metabolic modelling computational tools in the pathogenesis field (summarized in Fig. 1).Open in a separate windowFig. 1Genome‐scale metabolic network reconstructions for bacterial pathogenesis: it is time to leave a mark. Fast evolving advances in the genomics and metabolomics fields facilitate metabolic modelling of priority pathogens, of polymicrobial communities where key pathogens may have a starring role, and of host–pathogen systems. Metabolic reconstructions can yield significant benefits when combined with various layers of multi‐omics information as part of integration strategies, further enriched by the predictive potential of machine learning computational tools. Such integrative view will guide our experimental work to understand key metabolic traits in bacteria–bacteria or bacteria–host interactions where virulence is the outcome. More importantly, we foresee that such integrative view will contribute to pave the way for developing new diagnostic, treatment and surveillance procedures, seeking for their ultimate positive impact in the clinical management of bacterial infectious diseases.  相似文献   

9.
Shotgun metagenomics has been applied to the studies of the functionality of various microbial communities. As a critical analysis step in these studies, biological pathways are reconstructed based on the genes predicted from metagenomic shotgun sequences. Pathway reconstruction provides insights into the functionality of a microbial community and can be used for comparing multiple microbial communities. The utilization of pathway reconstruction, however, can be jeopardized because of imperfect functional annotation of genes, and ambiguity in the assignment of predicted enzymes to biochemical reactions (e.g., some enzymes are involved in multiple biochemical reactions). Considering that metabolic functions in a microbial community are carried out by many enzymes in a collaborative manner, we present a probabilistic sampling approach to profiling functional content in a metagenomic dataset, by sampling functions of catalytically promiscuous enzymes within the context of the entire metabolic network defined by the annotated metagenome. We test our approach on metagenomic datasets from environmental and human-associated microbial communities. The results show that our approach provides a more accurate representation of the metabolic activities encoded in a metagenome, and thus improves the comparative analysis of multiple microbial communities. In addition, our approach reports likelihood scores of putative reactions, which can be used to identify important reactions and metabolic pathways that reflect the environmental adaptation of the microbial communities. Source code for sampling metabolic networks is available online at http://omics.informatics.indiana.edu/mg/MetaNetSam/.  相似文献   

10.
石油化工产品的不合理处置与泄漏导致石油及其衍生物大量释放到环境中,由此造成的环境污染问题日益严重,石油污染已成为全球性公害之一。微生物修复技术凭借其成本低、环境友好等优势,广泛应用于石油污染的治理。大量研究表明功能微生物群落在石油污染生态系统的修复体系中发挥了重要的作用。其中,细菌是最主要、最活跃的石油降解微生物。然而,在原位/异位生物修复过程中,存在功能菌群在污染体系中难维持、易失调及石油烃降解途径不明晰等问题。因此,本文总结了石油污染自然生态系统和微宇宙实验体系中的细菌群落结构、石油烃代谢机制及相关功能基因,并对微生物法处理石油污染的未来研究方向提出展望,为石油污染场地生物修复方案的制定提供理论参考。  相似文献   

11.
12.
Chemically mediated interactions are hypothesized to be essential for ecosystem functioning as co-occurring organisms can influence the performance of each other by metabolic means. A metabolomics approach can support a better understanding of such processes but many problems cannot be addressed due to a lack of appropriate co-culturing and sampling strategies. This is particularly true for planktonic organisms that live in complex but very dilute communities in the open water. Here we present a co-culturing device that allows culturing of microalgae and bacteria that are physically separated but can exchange dissolved or colloidal chemical signals. Identical growth conditions for both partners as well as high metabolite diffusion rates between the culturing chambers are ensured. This setup allowed us to perform a metabolomic survey of the effect of the bacterium Dinoroseobacter shibae on the diatom Thalassiosira pseudonana. GC–MS measurements revealed a pronounced influence of the bacterium on the metabolic profile of T. pseudonana cells with especially intracellular amino acids being up-regulated in co-cultures. Despite the influence on diatom metabolism, the bacterium has little influence on the growth of the algae. This might indicate that the observed metabolic changes represent an adaptive response of the diatoms. Such interactions might be crucial for metabolic fluxes within plankton communities.  相似文献   

13.
Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >~40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use.  相似文献   

14.
Bacterial communities associated with the lichen symbiosis   总被引:1,自引:0,他引:1  
Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.  相似文献   

15.
The character of interaction between saprophytic soil bacteria via gaseous metabolites was studied. It was established that, at the metabolic level, a diverse character of interspecies interrelationships between bacteria exist, directly influencing their reproduction and preservation in soil. Volatile compounds produced by bacteria are able to act as both intra-and interspecies regulators of microbial communities. The soil microbiocenosis composition may be therefore regulated by volatile products of metabolism of saprophytic soil bacteria. Methanol released by bacteria into the environment plays an important role in this process.  相似文献   

16.
The influence of volatile metabolites of saprophytic soil microflora on the propagation of Listeria monocytogenes and Yersinia pseudotuberculosis is shown. Different character of interspecific relationships between bacteria, influencing their propagation, can be observed on the metabolic level. Volatile compounds produced by microorganisms are capable to act as both intra- and interspecific regulators of microbial communities. In this connection the propagation of pathogenic bacteria inhabiting soil may be stimulated or inhibited by the metabolic products of soil microorganisms. Methanol released by saprophytic bacteria into the environment play an important role in this process.  相似文献   

17.
Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as ‘type B associates’ may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies.  相似文献   

18.
Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.  相似文献   

19.
Alam MT  Medema MH  Takano E  Breitling R 《FEBS letters》2011,585(14):2389-2394
Actinomycetes are highly important bacteria. On one hand, some of them cause severe human and plant diseases, on the other hand, many species are known for their ability to produce antibiotics. Here we report the results of a comparative analysis of genome-scale metabolic models of 37 species of actinomycetes. Based on in silico knockouts we generated topological and genomic maps for each organism. Combining the collection of genome-wide models, we constructed a global enzyme association network to identify both a conserved "core network" and an "essential core network" of the entire group. As has been reported for low-degree metabolites in several organisms, low-degree enzymes (in linear pathways) turn out to be generally more essential than high-degree enzymes (in metabolic hubs).  相似文献   

20.
The character of interaction between saprophytic soil bacteria via gaseous metabolites was studied. It was established that, at the metabolic level, a diverse character of interspecies interrelationships between bacteria exist, directly influencing their reproduction and preservation in soil. Volatile compounds produced by bacteria are able to act as both intra- and interspecies regulators of microbial communities. The soil microbiocenosis composition may be therefore regulated by volatile products of metabolism of saprophytic soil bacteria. Methanol released by bacteria into the environment plays an important role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号