首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both in acute and chronic cats focal paroxysmal activity evoked in the ventro-basal complex of the amygdala has been inhibited by substantia nigra conditioning stimulation, to a greater extent, than by caudate nucleus activation. Injection of kainic acid into substantia nigra resulted in the disappearance of the caudate inhibition. It is suggested that the final control, exerted by the striatum on the amygdaloid seizures, occurs by means of the substantia nigra.  相似文献   

2.
Stimulation of the supratrigeminal area (STA) of the rat induced a monosynaptic EPSP in most mylohyoid-digastric motoneurons and a monosynaptic IPSP or EPSP in the majority of masseteric ones, contralaterally. Stimulation of the central amygdaloid nucleus induced the ipsilateral STA activity immediately followed by the contralateral mylohyoid nerve activities. The same amygdaloid stimulated excited 19 of 46 STA neurons, which were antidromically identified to project to the contralateral trigeminal motor nucleus. Nine of these were monosynaptically excited. The mean of the antidromic and monosynaptic latencies of these neurons explains the mean onset latencies of the amygdaloid influences on the contralateral trigeminal motoneurons. Therefore, the shortest crossing amygdalo-motoneuronal pathway is probably disynaptic and mediated by commissural STA neurons.  相似文献   

3.
The pattern of neuronal spike activity in the amygdaloid structure was studied in the sleep-wake cycle during experiments on unrestrained rats. It was shown that most neurons of the dorsomedial portion of the amygdala display greater spike activity during active wakefulness (80%) and paradoxical sleep (66.7%) than during slow-wave sleep. Most neurons of the basolateral amygdaloid region discharged at high frequency during active wakefulness (84.6%) and during paradoxial sleep (38.4%) compared with the frequency of firing during slow-wave sleep. Some neurons were found whose rate of discharge rose during slow-wave sleep in comparison with a similar period of paradoxical sleep (38.4%) and of active wakefulness (7.7%). Our findings show how the pattern of neuronal activity in the dosromedial and basolateral regions of the amygdaloid structure differs at various stages of the sleep-wake cycle. It is postulated that this structure serves mainly to regulate emotionally motivated processes rather than helping to govern the basic mechanisms of the sleep-wake cycle.Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 747–756, November–December, 1985.  相似文献   

4.
In microelectrophysiological investigations influences of different nuclear regions of the amygdaloid complex on the spike activity of the functionally identified single respiratory neurons of the medulla oblongata were studied in anesthetized cats. It was established a qualitative different character of the changes of unit activity of the medullary respiratory neurons in case of stimulation of phylogenetically old corticomedial or new basolateral nuclear groups of the amygdala. It was shown higher reactivity of the investigated neurons to stimulation of the corticomedial nuclei than basolateral. The influences of the corticomedial nuclear groups on the bulbar inspiratory and expiratory neurons were facilitatory as well as inhibitory with prevailing excitatory effects. It was found that influences of the phylogenetically new neoamygdaloid structures of basolateral region on spike activity of the bulbar respiratory neurons differ accordingly to their topographical differentiation. Mechanisms of amygdaloid control of activity of the medullary respiratory neurons are discussed.  相似文献   

5.
The seizure susceptibility of amygdaloid complex in rat was investigated. In piriform cortex and cortical nucleus of amygdaloid complex the structural and electrophysiological rostro-caudal differences were found (using relative spectral densities EEG, seizure thresholds, electrical kindling rate). The fundamental dependence of severity of motor seizures from structural (nuclear or cortical) organization of stimulating area was shown. There were more of limbic stages while stimulating anterior and posterior cortical nuclei, and there were more generalized stages while stimulating piriform and periamygdaloid cortex. Using the model of electrical kindling anticonvulsant effects of Sacricin were demonstrated. Sacricin is one of the compounds of polycarbonic acid. Sacricin has fully coped the process of secondary generalization of epileptic seizures.  相似文献   

6.
Data on the electrolytic lesions of the brain structures (striatum, dorsal hippocampus, amygdaloid complex) in rats suggest a trigger role of striatum in the formation of quinolinic acid (30 micrograms, intracerebroventricularly)--induced seizures. EEG recording also supports this conclusion.  相似文献   

7.
A mass fragmentographic method for the simultaneous quantification of gamma-aminobutyric acid (GABA) and glutamic acid is described. In a convenient one-step reaction, the two amino acids were derivatized with pentafluoropropionic anhydride and pentafluoropropanol. The derivatization products were stable for several days. The technique has been applied to the assay of GABA and Glu in five amygdaloid nuclei of the rat brain. The GABA level was high in the central and medial nuclei, whereas the Glu level was high in the lateral and basal nuclei. The regional distribution of GABA was different from that of Glu within the amygdaloid nuclei.  相似文献   

8.
The effect of bilateral lesion of the amygdaloid nuclear complex on the hypothalamic L-leucinaminepeptidase (LAP) activity has been studied in the rat. Amygdalectomized animals show an increase in this activity, specially when lesion extends to the whole complex or when the basolateral and basomedial nuclei remain intact. The increase in LAP activity is not so significant when the lesion does not affect the cortical nucleus.  相似文献   

9.
Hypokinesia lasting 40 and 90 days causes a number of ultramicroscopic reorganizations in neurons, synapses and glial elements of the singular cortex and the central amygdaloid nucleus. The longer the time of hypokinesia, the more numerous and variable the reorganizations become. For the amygdaloid body presence of neurons with various degree of chromatolysis, reactive and destructive changes of organells, agglutination and reduction in number of the synaptic vesicles, increasing number of synapses, possessing certain features of low functional activity are most specific. For the singular cortes are peculiar convolution of nuclear and cellular membranes, synaptic contact, increasing intercellular spaces, as well as changes in the structure of some axo-spine synapses, the spine apparatus including.  相似文献   

10.
Abstract: Previously, we have reported that intranigral infusions of malonate, an inhibitor of mitochondrial function, lead to the degeneration of the dopaminergic neurons of the nigrostriatal pathway that is mediated, at least in part, through NMDA receptor activation and nitric oxide formation. In the present study, unilateral focal infusions of malonate into the nucleus basalis magnocellularis (nbM) of male Sprague-Dawley rats (weighing 250–300 g) resulted in a dose-related depletion in ipsilateral cortical and amygdaloid choline acetyltransferase (ChAT) activity. Infusion of a 3 µmol dose of malonate into the nbM of vehicle-treated animals resulted in a 41 and 54% decrease in cortical and amygdaloid ChAT activity, respectively. Systemic pretreatment with lamotrigine (16 mg/kg, i.p.) and MK-801 (5 mg/kg, i.p.) attenuated the depletions in cortical and amygdaloid ChAT activity that resulted from an infusion of this dose of malonate into the nbM. Acetylcholinesterase (AChE) histochemistry of the nbM following focal infusion of malonate (3 µmol) showed a marked decrease in the number of AChE-positive neurons that was partially prevented by MK-801 pretreatment. Before examining the role of nitric oxide formation in malonate-induced toxicity, the ability of systemic administration of Nω-nitro-l -arginine (l -NA) to inhibit nitric oxide synthase (NOS) activity in the nbM and cerebellum was investigated. l -NA (2, 10, and 20 mg/kg, i.p.) produced a dose-related inhibition of nbM and cerebellar NOS activity that was maximal following a dose of 10 mg/kg l -NA. This level of NOS inhibition persisted for at least 13 h following l -NA (10 mg/kg) administration. Subsequently, the effect of l -NA pretreatment on malonate toxicity was evaluated. Following pretreatment with l -NA (2 and 10 mg/kg, i.p.), the toxic action of malonate on cortical and amygdaloid ChAT activity was not altered. In addition, infusion of a lower dose of malonate (2 µmol) into the nbM resulted in decreases in cortical and amygdaloid ChAT activity that were not altered by pretreatment with l -NA (2 and 10 mg/kg, i.p.). In 7-nitroindazole (7-NI; 25 and 50 mg/kg, i.p.)-pretreated animals, malonate (3 µmol) produced decreases in cortical and amygdaloid ChAT activity that were attenuated by both doses of 7-NI. Thus, malonate-induced destruction of the basal forebrain cholinergic neurons was attenuated by systemic pretreatment with lamotrigine, MK-801, and 7-NI but not by l -NA.  相似文献   

11.
Stress during childhood and adolescence is a risk factor for psychopathology. Alterations in γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, have been found following stress exposure and fear experiences and are often implicated in anxiety and mood disorders. Abnormal amygdala functioning has also been detected following stress exposure and is also implicated in anxiety and social disorders. However, the amygdala is not a unitary structure; it includes several nuclei with different functions and little is known on the potential differences the impact of early life stress may have on this system within different amygdaloid nuclei. We aimed here to evaluate potential regional differences in the expression of GABAergic-related markers across several amygdaloid nuclei in adult rats subjected to a peripuberty stress protocol that leads to enhanced basal amygdala activity and psychopathological behaviors. More specifically, we investigated the protein expression levels of glutamic acid decarboxylase (GAD; the principal synthesizing enzyme of GABA) and of GABA-A receptor subunits α2 and α3. We found reduced GAD and GABA-A α3, but not α2, subunit protein levels throughout all the amygdala nuclei examined (lateral, basolateral, basomedial, medial and central) and increased anxiety-like behaviors and reduced sociability in peripubertally stressed animals. Our results identify an enduring inhibition of the GABAergic system across the amygdala following exposure to early adversity. They also highlight the suitability of the peripuberty stress model to investigate the link between treatments targeting the dysfunctional GABAergic system in specific amygdala nuclei and recovery of specific stress-induced behavioral dysfunctions.  相似文献   

12.
Deamination of dopamine and serotonin by monoamine oxidase was studied in the prefrontal cortex, striatum, hippocampus and amygdaloid complex of the brain of rats during retrieval of conditioned passive avoidance response. Changes in the dopamine and serotonin metabolism were observed in different brain structures. A decrease in dopamine-deaminating activity of monoamine oxidase was found in the hippocampus, striatum and prefrontal cortex. At the same time, serotonin-deaminating activity of the enzyme was decreased in the striatum and increased in the amygdaloid complex, whereas it did not change in the prefrontal cortex and hippocampus. The observed changes in dopamine metabolism in the prefrontal cortex and hippocampus and serotonin metabolism in the amygdaloid complex indicate that dopamine and serotonin are involved in the regulation of two different processes mediating the memory trace retrieval. Dopamine is involved in neuronal mechanisms of information processes providing the strategy of behavior, whereas serotonin is related to emotional mechanisms of memory.  相似文献   

13.
14.
Bilateral lesions of basomedial amygdaloid nuclei are capable of significantly inhibiting muricidal aggression induced by oral p-chlorophenylalanine (p-CPA) in male rats. Rats lesioned in extra-amygdaloid structures or sham-lesioned show the usual p-CPA-induced muricidal activity, which ranges from 70 to 80% of treated animals. The results obtained indicate that basomedial amygdaloid nuclei play an important role in regulating p-CPA-induced muricidal aggression, even though the effect lasts for a relatively limited period of time. This fact is probably due to the intervention of still unidentified compensatory mechanisms.  相似文献   

15.
A modulating character of the amygdala basolateral nuclei effect upon the vestibular sensory system was determined in rabbits [correction of rats]. A mechanism of the descending effect of the amygdaloid complex on the activity of the Deiters nucleus neurons, is discussed.  相似文献   

16.
Summary Light microscopic autoradiography was performed subsequent to injection of tritiated amino acids into various parts of the amygdaloid body of the rat. Evidence is provided for two hitherto unreported projections of the amygdala: from the medial amygdaloid nucleus to the contralateral premamillary nuclei and from the central amygdaloid nucleus to the mesencephalic central grey. The functional implications of these findings are discussed.  相似文献   

17.
Summated electrical activity of the human amygdaloid nucleus was investigated in the neurosurgical clinic by chronically implanted electrodes. It was found that odoriferous stimulation of this structure produced bursts of rapid rhythm (20–30 cps, 30–50 µV). The quasisinusoidal waves of olfactory rhythm consist of sinusoidal components which are more pronounced within the 20–30-Hz frequency range. Spindling of 1–3 sec duration occurs at the end of inhalation and the beginning of exhalation in time with breathing. During monorhinal breathing this activity, whose amplitude depends on degree of olfactory stimulation, can only be recorded ipsilaterally. Room air also activates the amygdaloid nucleus, but less strongly than odoriferous substances: No characteristic odor-dependent differences were discovered in the frequency range of the olfactory rhythm within a 20–30-Hz band.Institute of Physiology, Kiev State University, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 61–69, January–February, 1986.  相似文献   

18.
The effect of electric footshocks and of exposure to environmental stimuli paired with electrical shocks upon the dopaminergic activity in various cortical and limbic areas of the rat were evaluated by measuring dihydroxyphenylacetic acid (DOPAC) levels in these areas. In animals exposed to a 20 min electric footshock session DOPAC concentrations were significantly increased in the antero-medial and sulcal frontal cortices, olfactory tubercle, nucleus accumbens and amygdaloid complex (by 66, 37, 28, 55 and 90% respectively). Re-exposure of rats to an environment where they had been shocked 24 h earlier induced an elevation of DOPAC content only in the anteromedial frontal cortex (by 47%). Plasma corticosterone levels were elevated in both situations. No change in serotonin or 5-hydroxyindolacetic acid content of these areas could be detected in either situation. The results show that electric footshocks and environmental stimuli associated to previous shocks both activate central dopaminergic systems, although the patterns of activation are different.  相似文献   

19.
基底外侧杏仁核对大鼠睡眠和行为的调节作用及机制研究   总被引:4,自引:1,他引:3  
目的和方法 :本研究运用多导睡眠描记 (PSG)方法、大白鼠开阔实验法及强迫游泳实验观察杏仁核的基底外侧核 (BLN)内微量注射谷氨酸、吗啡和纳络酮对大鼠睡眠、觉醒和行为的影响。结果 :用谷氨酸选择性兴奋BLN内神经元胞体可增加觉醒 ,减少慢波睡眠 (SWS)和总睡眠时间 (TST) ,增加大鼠自主活动和缩短强迫游泳“不动”时间。吗啡作用与谷氨酸相似 ,而阿片受体阻断剂纳络酮引起的作用则与之相反 ,并可完全阻断吗啡的作用。结论 :BLN神经元兴奋可引起觉醒增加、SWS减少和自主活动增加效应 ,阿片受体激动剂是BLN调节睡眠、觉醒和行为的重要递质。  相似文献   

20.
GABA参与兔杏仁体抑制内膝体神经元电活动   总被引:2,自引:1,他引:1  
Yang L  Dong XW  Feng MZ  Wu QY  Zhou SC 《生理学报》1998,50(3):257-262
本文采用多管微电极胞外记录技术观察了短纯音引起兔内膝神经元的声反应及刺激杏仁体对声反应的影响,并在此基础上观察电泳GABA及其拮抗剂Bicuculline的效应。实验结果表明:GABA可以抑制MGB神经元的声反应及自发放电活动,而GABAA拮抗剂Bicuculline的作用则相反;电泳GABA对MGB神经元产生同刺激杏仁体一样的抑制产应,并且这种影响可被Bicuculline翻转;嗅鼻沟后缘听区农  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号