首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Maize bran heteroxylan samples were extracted in various conditions of severity. Their ferulate and diferulate content was investigated by GC-MS of methyl ester-TMSi derivatives. When extracted by 0.5 M NaOH in mild conditions, the heteroxylan sample contained a low level of ferulic acid (0.032% by wt.) and the main diferulate surviving alkaline extraction was found to be the 8-8' diferulate. On peroxidase treatment, this sample nevertheless produced a firm and brittle gel without any change in the diferulate profile. Typical lignin structures, mainly comprising syringyl units interconnected through beta-O-4, beta-1 and beta-beta interunit bonds, were evidenced in the maize bran sample. More importantly, these lignin structures were found to be tightly associated with the alkali-extracted heteroxylans. Thioacidolysis revealed the occurrence of 0.1-0.5% (by wt.) lignin structures in heteroxylan fractions extracted in mild or severe conditions, before and after purification of the polysaccharides. The gelling potential of the heteroxylan fractions was not only dependent on their ferulate level, but also influenced by associated lignin structures. These results argue for the occurrence of covalent linkages between heteroxylan chains and lignin structures which could participate in the peroxidase-driven gelation of feruloylated polysaccharides. They demonstrate the role of low lignin levels in the organization of native or reconstructed polysaccharide networks.  相似文献   

2.
The first saccharide ester of a dehydrodiferulic acid (DFA) other than 5-5-DFA has been isolated from maize bran insoluble fibre after acidic hydrolysis and fractionation by gel chromatography and semi-preparative RP-HPLC. HPLC-MS along with 1D, 2D and 3D NMR spectra provided the requisite structural evidence that it is the di-5-O-l-arabinosyl ester of 8-O-4-DFA. Although a range of DFAs have been well authenticated as components released from the cell walls of grasses, the only structural evidence for a DFA attached to polysaccharides had been from 5-5-DFA. The isolation of the 8-O-4-ester demonstrates that polysaccharides in maize cell walls, and presumably in all grasses, are cross-linked through dehydrodiferulates other than 5-5-dehydrodiferulate.  相似文献   

3.
Nine saponins were isolated from the seeds of Mimusops laurifolia. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Three of them are identified as: 3-O-(beta-d-apiofuranosyl-(1-->3)-beta-d-glucuronopyranosyl)-28-O-(alpha-l-rhamnopyranosyl-(1-->3)-beta-d-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-(beta-d-glucopyranosyl-(1-->3)-beta-d-glucopyranosyl)-28-O-(alpha-l-rhamnopyranosyl-(1-->3)-beta-d-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranosyl)-16alpha-hydroxyprotobassic acid and 3-O-(beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranosyl)-28-O-(alpha-l-rhamnopyranosyl-(1-->3)-beta-d-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranosyl)-16alpha-hydroxyprotobassic acid.  相似文献   

4.
Cell wall polysaccharide interactions in maize bran   总被引:7,自引:0,他引:7  
Sequential extractions with alkali have been carried out in order to study the nature of linkages which hold heteroxylans in maize bran cell walls. Treatment with 0.5 sodium hydroxide at 30 °C for 2 h released all the phenolic acids (p-coumaric, ferulic, and diferulic) but extracted only ˜30% of heteroxylans (S1); further treatment with 1.5 potassium hydroxide at 100 °C for 2 h released the remaining heteroxylans (S2). The heteroxylans from S1 and S2 had a similar neutral sugar composition and structure, but their weight average molecular weights were 270 kDa (Mw/Mn = 2) and 370 kDa (Mw/Mn = 2.8), respectively. Proteins (5%) are found with polysaccharides from S1 and S2, with different amino acid composition. The results suggest that covalent linkages through phenolic acids are only partly responsible for the associations of maize bran heteroxylans in the cell wall and that linkages to structural cell wall proteins were probably the main cause of heteroxylan insolubility.  相似文献   

5.
Two new dehydrotriferulic acids were isolated from saponified maize bran insoluble fiber using Sephadex LH-20 chromatography followed by semi-preparative RP-HPLC. Based on UV-spectroscopy, mass spectroscopy and one- and two-dimensional NMR experiments, the structures were identified as 8-O-4,8-O-4-dehydrotriferulic acid and 8-8(cyclic),8-O-4-dehydrotriferulic acid. Which of the possible phenols in the initially formed 8-8-dehydrodiferulate was etherified by 4-O-8-coupling with ferulate has been unambiguously elucidated. The ferulate dehydrotrimers which give rise to these dehydrotriferulic acids following saponification are presumed, like the dehydrodiferulates, to cross-link polysaccharides. Neither dehydrotriferulic acid described here involves a 5-5-dehydrodiferulic acid unit; only the 5-5-dehydrodimer may be formed intramolecularly. However, whether dehydrotriferulates are capable of cross-linking more than two polysaccharide chains remains open. Although the levels of the isolated ferulate dehydrotrimers are lower than those of the ferulate dehydrodimers, the isolation now of three different dehydrotriferulates indicates that trimers contribute to a strong network cross-linking plant cell wall polysaccharides.  相似文献   

6.
Structural features of the acidic, highly substituted glycanoxylan (LCP; 87% yield) from the gum exudate of the palm, Livistona chinensis, family Arecaceae, were determined. It had [alpha]D -30 degrees, Mw 1.9x10(5) and a polydispersity ratio Mw/Mn of approximately 1.0. Acid hydrolysis gave rise to Rha, Fuc, Ara, Xyl, and Gal, in a 1:6:46:44:3 molar ratio, and 12% of uronic acid was present. LCP had a highly branched structure with side-chains containing nonreducing end-units (% values are approximate) of Araf (15%), Fucp (4%), Xylp (7%), GlcpA, and 4-Me-GlcpA, and internal 2-O- (5%) and 3-O-substituted Araf (8%), and 2-O-substituted Xylp (14%) units. The (1-->4)-linked beta-Xylp main-chain units of LCP were substituted at O-3 (4%), O-2 (17%), and O-2,3 (16%). Partial acid hydrolysis gave 4-Me-alpha-GlcpA-(1-->2)-[beta-Xylp-(1-->4)](0-2)-Xyl, identified by showing that the uronic acids were single-unit side-chain substituents on O-2. Milder hydrolysis conditions removed from O-3 other side-chains containing Fucp and Araf nonreducing end-units and internal Arap, and 2-O- and 3-O-substituted Araf units. Carboxyl-reduced LCP contained 4-O-methylglucose and glucose in a 3.2:1 molar ratio, arising from GlcpA and 4-OMe-GlcpA nonreducing end-units, respectively. The gum contained small amounts of free alpha-Fucp-(1-->2)-Ara, which corresponds to structures in the polysaccharide. Free myo- and D- or L-chiro-inositol were present in a 9:1 ratio.  相似文献   

7.
Triterpenoid saponins from the fruits and galls of Sapindus mukorossi   总被引:3,自引:0,他引:3  
Huang HC  Wu MD  Tsai WJ  Liao SC  Liaw CC  Hsu LC  Wu YC  Kuo YH 《Phytochemistry》2008,69(7):1609-1616
Six saponins, sapinmusaponin K (1) [hederagenin-3-O-(3-O-acetyl-alpha-L-arabinopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin L (2) [hederagenin-3-O-(4-O-acetyl-alpha-L-arabinopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabino-pyranoside], sapinmusaponin M (3) [hederagenin-3-O-(2,3-O-diacetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin N (4) [hederagenin-3-O-(2,4-O-diacetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside], sapinmusaponin O (5) [3,7,20(S)-trihydroxydammar-24-ene-3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside], and sapinmusaponin P (6) [3,7,20(R)-trihydroxydammar-24-ene-3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-d-glucopyranoside], along with seven known saponins (7-13), were isolated from fruits and the galls of Sapindus mukorossi. Their structures were elucidated by 1D and 2D NMR spectroscopic techniques and acid hydrolysis. Biological evaluation indicated that saponins 1-4 and 7-13 showed moderate cytotoxicity against several human tumor cell lines.  相似文献   

8.
Seven steroidal glycosides, along with one known glycoside, were isolated from the rhizomes of Ruscus hypophyllum (Liliaceae). Comprehensive spectroscopic analysis, including 2D NMR spectroscopy, and the results of acid hydrolysis allowed the chemical structures of the compounds to be assigned as (23S,25R)-23-hydroxyspirost-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (1), 1beta-hydroxyspirosta-5,25(27)-dien-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (2), (22S)-16beta,22-dihydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (3), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (4), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl beta-d-glucopyranoside (5), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-(3,4-di-O-acetyl-beta-d-xylopyranoside) (6), and (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-O-[beta-d-xylopyranosyl-(1-->3)]-beta-d-xylopyranoside (7), respectively. This is the first isolation of a series of cholestane glycosides from a Ruscus species.  相似文献   

9.
Melek FR  Miyase T  Ghaly NS  Nabil M 《Phytochemistry》2007,68(9):1261-1266
Three (1,2,4) and one known (3) triterpenoid saponins were isolated from the bark of Albizia procera. The saponins were characterized as 3-O-[beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)-2-acetamido-2-deoxy-beta-D-glucopyranosyl] echinocystic acid (1), 3-O-[alpha-L-arabinopyranosyl-(1-->2)-beta-D-fucopyranosyl-(1-->6)-2-acetamido-2-deoxy-beta-D-glucopyranosyl] echinocystic acid (2) and 3-O-[beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)-2-acetamido-2-deoxy-beta-D-glucopyranosyl] acacic acid lactone (4). Their structures were elucidated by 1D and 2D NMR experiments, FABMS as well as chemical means. Saponins 1 and 3 exhibited cytotoxicity against HEPG2 cell line with IC50 9.13 microg/ml and 10 microg/ml, respectively.  相似文献   

10.
A new phenolic acid trimer was detected by coupled liquid chromatography/mass spectroscopy in alkali extracts of maize bran. The trimer was purified by preparative silica gel chromatography. The structure of the new compound was elucidated on the basis of 1D and 2D NMR and corresponded to a 4-O-8', 5'-5" dehydrotriferulic acid.  相似文献   

11.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

12.
The seed mucilage from Plantago major L. contains acidic heteroxylan polysaccharides. For further structural analysis, oligosaccharides were generated by partial acid hydrolysis and then isolated by high-pH anion-exchange chromatography (HPAEC). Each HPAEC fraction was shown by ESMS to contain one major oligosaccharide and several minor components. Partial structures of the oligosaccharides were determined using GC-MS, ESMS and ES tandem mass spectrometry (ESMS/MS). A (1-->4)-linked xylan trisaccharide and (1-->3)-linked xylan oligosaccharides with DP 6-11 suggested that the backbone of the heteroxylan polysaccharide consisted of blocks of (1-->4)-linked and (1-->3)-linked Xylp residues. A (1-->2)-linked Xylp disaccharide and a branched tetrasaccharide were also found, revealing that single Xylp residues are linked to the O-2 of some of the (1-->4)-linked Xylp residues in the backbone. In addition, our results confirm the presence of side chains consisting of the disaccharide GlcpA-(1-->3)-Araf.  相似文献   

13.
An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.  相似文献   

14.
Commercially available enzyme preparations were screened for enzymes that have a high ability to catalyze direct ester-synthesis of ferulic acid with glycerol. Only a preparation, Pectinase PL “Amano” produced by Aspergillus niger, feruloylated glycerol under the experimental conditions. The enzyme responsible for the esterification was purified and characterized. This enzyme, called FAE-PL, was found to be quite similar to an A. niger ferulic acid esterase (FAE-III) in terms of molecular mass, pH and temperature optima, substrate specificity on synthetic substrates, and the N-terminal amino acid sequence. FAE-PL highly catalyzed direct esterification of ferulic acid and sinapinic acid with glycerol. FAE-PL could feruloylate monomeric sugars including arabinose, fructose, galactose, glucose, and xylose. We determined the suitable conditions for direct esterification of ferulic acid with glycerol to be as follows: 1% ferulic acid in the presence of 85% glycerol and 5% dimethyl sulfoxide at pH 4.0 and 50 °C. Under these conditions, 81% of ferulic acid could be converted to 1-glyceryl ferulate, which was identified by 1H-NMR. The ability of 1-glyceryl ferulate to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was higher than that of the anti-oxidant butyl hydroxytoluene.  相似文献   

15.
The heteroxylan from the hybrid Paulownia elongata/Paulownia fortunei is an O-acetyl-(4-O-methylglucurono)xylan with an acetylation degree (DS) of 0.59 and a molecular weight (M(w)) of 29 kDa. The heteroxylan backbone is composed by (1-->4)-linked beta-d-xylopyranosyl units (Xylp) partially ramified with terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl (MeGlcpA) and a small proportion of alpha-D-glucuronosyl (GlcpA) residues in a molar ratio of Xylp:(MeGlcpA+GlcpA) of 20:1. Roughly half of the beta-D-xylopyranosyl units in the backbone are acetylated: 3-O-acetylated (22 mol %), 2-O-acetylated (23 mol %) or 2,3-di-O-acetylated (7 mol %). ESI-MS and MALDI-MS studies of partially hydrolyzed heteroxylan revealed a random distribution of O-Ac and MeGlcpA within the backbone. However, the frequency of substitution with O-Ac along the backbone is not uniform and the molecular regions that did not contain MeGlcpA substituents possessed an acetylation degree significantly lower than the average DS of the xylan.  相似文献   

16.
Carbohydrates from Cynanchum otophyllum   总被引:1,自引:0,他引:1  
Zhao YB  Shen YM  He HP  Li YM  Mu QZ  Hao XJ 《Carbohydrate research》2004,339(11):1967-1972
Four new carbohydrates were isolated from the acidic hydrolysis part of the ethyl acetate extract of Cynanchum otophyllum Schneid (Asclepiadaceae). Their structures were determined as methyl 2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1-->4)-6-deoxy-3-O-methyl-beta-D-ribo-hexopyranosyl-(1-->4)-6-deoxy-3-O-methyl-alpha-L-ribo-hexopyranoside (1), methyl 6-deoxy-1,3-di-O-methyl-beta-D-ribo-hexosyl-(1-->4)-2,6-dideoxy-3-O-methyl-alpha-D-arabino-hexopyranoside (2), methyl 2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1-->4)-6-deoxy-3-O-methyl-alpha-L-ribo-hexopyranoside (3), and 2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1-->4)-2,6-dideoxy-3-O-methyl-alpha-D-arabino-hexopyranosyl-(1-->4)-2,6-dideoxy-3-O-methyl-beta-D-lyxo-hexopyranose (4), respectively, by spectral methods.  相似文献   

17.
In this paper, polysaccharides were extracted from the seeds of Plantago asiatica L. with hot water and separated into three fractions PLP-1 (18.9%), PLP-2 (52.6%) and PLP-3 (28.5%) by Sephacryl™ S-400 HR column chomatography. The main fraction PLP-2's structure was elucidated using oxalic acid hydrolysis, partial acid hydrolysis, methylation, GC, GC-MS, 1D and 2D NMR. PLP-2 was composed of Rha, Ara, Xyl, Man, Glc and Gal, in a molar ratio of 0.05:1.00:1.90:0.05:0.06:0.10. Its uronic acid was GlcA. PLP-2 was highly branched heteroxylan which consisted of a β-1,4-linked Xylp backbone with side chains attached to O-2 or O-3. The side chains consisted of β-T-linked Xylp, α-T-linked Araf, α-T-linked GlcAp, β-Xylp-(1 → 3)-α-Araf and α-Araf-(1 → 3)-β-Xylp, etc. Based on these results, the structure of PLP-2 was proposed.  相似文献   

18.
Further saponins from Meryta lanceolata   总被引:2,自引:0,他引:2  
Five new oleanane-type saponins along with 11 known ones were isolated from the leaves and stems of Meryta lanceolata. The new saponins were characterised by spectroscopic analysis including FAMS, 1 and 2D NMR experiments and the results of hydrolysis as 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucuronopyranosyl] hederagenin 28-O-[alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranosyl] ester, 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucuronopyranosyl] oleanolic acid 28-O-[alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranosyl]ester, 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucuronopyranosyl] oleanolic acid 28-O-[alpha-l-rhamnopyranosyl-(1-->4)-beta-d-6-O-acetyl glucopyranosyl-(1-->6)-beta-d-glucopyranosyl]ester, 3-O-[beta-d-glucopyranosyl-(1-->3)-beta-d-glucopyranosyl-(1-->3)-alpha-l-arabinopyranosyl] oleanolic acid 28-O-[alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranosyl] ester and 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucuronopyranosyl] hederagenin, respectively.  相似文献   

19.
A heteroxylan was isolated from Eucalyptus globulus wood by extraction of peracetic acid delignified holocellulose with dimethyl sulfoxide. Besides (1-->4)-linked beta-D-xylopyranosyl units of the backbone and short side chains of terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl residues (MeGlcA) in a 1:10 molar ratio, this hemicellulose contained galactosyl and glucosyl units attached at O-2 of MeGlcA originating from rhamnoarabinogalactan and glucan backbones, respectively. About 30% of MeGlcA units were branched at O-2. The O-acetyl-(4-O-methylglucurono)xylan showed an acetylation degree of 0.61, as determined by 1H NMR spectroscopy, and a weight-average molecular weight (M(w)) of about 36 kDa (P=1.05) as revealed from size-exclusion chromatography (SEC) analysis. About half of the beta-D-xylopyranosyl units of the backbone were found as acetylated moieties at O-3 (34 mol%), O-2 (15 mol%) or O-2,3 (6 mol%). Practically, all beta-D-xylopyranosyl units linked at O-2 with MeGlcA residues were 3-O-acetylated (10 mol%).  相似文献   

20.
Five 3-O-glucuronide triterpene saponins (1-5) were isolated from the stem bark of Bersama engleriana Gurke along with two known saponins, polyscias saponin C and aralia saponin 15, and one major C-glycoside xanthone, mangiferin. The structures of the saponins were established mainly by means of spectroscopic methods (one- and two-dimensional NMR spectroscopy as well as FAB-, HRESI-mass spectrometry) as 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-betulinic acid (1), 3-O-[beta-D-glucopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl]-oleanolic acid (2), 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-xylopyranosyl-(1-->6)-beta-d-glucopyranosyl]-oleanolic acid (3), 3-O-[beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-oleanolic acid (4), and 3-O-[beta-d-glucopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-d-xylopyranosyl-(1-->6)-beta-D-glucopyranosyl]-oleanolic acid (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号