首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In nitrogen (N) fixing symbioses, host‐symbiont specificity, genetic variation in bacterial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N‐fixers. This study examined phylogenetic host specificity of Frankia in field‐collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial autocorrelation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus‐infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession habitats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. Our results suggest that phylogenetic specificity is a significant factor in the A. tenuifoliaFrankia interaction and that significant habitat‐based differentiation may exist among A. tenuifolia‐infective genotypes. This is consistent with our hypothesis that A. tenuifolia selects specific Frankia genotypes from early succession soils and that this choice is attenuated in late succession.  相似文献   

2.
Nodule samples were collected from four alder species: Alnus nepalensis, A. sibirica, A. tinctoria and A. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS between nifD and nifK genes was directly applied to uncultured Frankia strains in the nodules. A total of 21 restriction patterns were obtained. The Frankia population in the nodules of A. nepalensis had the highest genetic diversity among all four Frankia populations; by contrast, the population in the nodules of A. mandshurica had the lowest degree of divergence; the ones in the nodules of A. sibirica and A. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated that Frankia strains from A. sibirica and A. tinctoria had a close genetic relationship. Frankia strains from A. nepalensis might be the ancestor of Frankia strains infecting other Alnus species. From these results and the inference of the ages of Alnus host species, it is deduced that there was a co-evolution between Alnus and its microsymbiont Frankia in China.  相似文献   

3.

Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.

  相似文献   

4.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

5.
To examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered. Clavulina, an ECM lineage never before reported with Alnus, contained the dominant taxon overall. ECM assemblage structure varied between hosts, but UniFrac significance tests indicated that both associated with similar ECM lineage diversity. There was a strikingly high sequence similarity among a diverse array of the ECM taxa in Mexico and those in Alnus forests in Argentina, the United States, and Europe. The Mexican and United States assemblages had greater overlap than those present in Argentina, supporting the host–ECM fungi co-migration hypothesis from a common north temperate origin. Our results indicate that Alnus-associated ECM assemblages have clear patterns in richness and composition across a wide range of geographic locations. Additional data from boreal western North America as well as the eastern United States and Canada will be particularly informative in further understanding the co-biogeographic patterns of Alnus and ECM fungi in the Americas.  相似文献   

6.
The microfungi of three palm species were investigated in their natural habitats and in habitats where the palms were cultivated outside their natural ranges. The palms that were selected differed in their habitats and ecology. Archontophoenix alexandrae is endemic to tropical rainforests in Australia, Cocos nucifera is pan‐tropical and Trachycarpus fortunei occurs in warm‐temperate China. Different assemblages of fungi were found in association with palms in temperate regions as compared to those in tropical regions. These differences were more related to climatic influences than to the hosts sampled, as few fungi were host‐species specific. The status of the hosts at the site, i.e. indigenous or introduced, and the degree of disturbance of the habitats within which the palms grew were also influential. When sampled in its natural habitat, Archontophoenix alexandrae had a distinct palmicolous mycota typical of other palms in tropical rainforests. Outside of the palm’s natural habitat, a widely different mycota were recorded that comprised tropical species of a more plurivorous nature. A similar plurivorous assemblage characterized the fungi associated with Cocos nucifera, probably due to the palm’s long history of cultivation. Similarly, plurivorous, but temperate or widespread fungi were associated with Trachycarpus fortunei, both within and outside of its natural habitat. This palm is also highly cultivated. A reduction in palm fungi associated with palms in disturbed habitats has implications for conservation of these fungi. However, it is acknowledged that the data for fungal diversity and distribution is incomplete and fragmentary.  相似文献   

7.
We studied patterns of variation in species composition of flea assemblages on small mammals across different habitats of Slovakia and compared flea species composition within and across host species among habitats. We asked (1) how variable the composition of flea assemblages is among different populations of the same host occurring in different habitats and (2) whether the composition of flea assemblages in a habitat is affected either by species composition of hosts or by environmental affinities of this habitat. Between-habitat similarity in flea species composition increased with an increase in the similarity in host species composition. Species richness of flea assemblages of a host species correlated positively with mean number of cohabitating host species but not with the number of habitats occupied by a host species. Results of the ordination of flea collections from each individual host demonstrated that the first five principal components explained most of the variance in species composition of flea assemblages. The segregation between rodent and insectivore flea assemblages was easily discerned from the ordination diagram when flea assemblages were plotted according to their hosts. When flea assemblages were plotted according to their habitat affinities, the distinction of habitats based on variation in flea composition was not as clear. The results of ANOVA of each principal component showed the significant effect of both host species and habitat type. The variation in each principal component was explained better by the factor of host species compared with the factor of habitat type. Multidimensional scaling of flea assemblages within host species across habitats demonstrated that among-habitat variation in flea composition was manifested differently in different hosts.  相似文献   

8.
Optimum growth conditions and inoculation regimes were determined for severalFrankia strains isolated from both Alnus and Casuarina host plants. Growth conditions were estabilished that allowed a reduction in generation time to less than 15 hours for certain Alnus derivedFrankia. Differences in plant growth response were observed with differing inoculum levels and soil mixtures. Elite strains of Alnus derivedFrankia were isolated that elicited similar growth reponses in allAlnus species tested; however, differences were observed betweenFrankia strains and plant growth response of variousCasuarina species tested.  相似文献   

9.
Erwin’s method for estimating total global species richness assumes some host‐specificity among the canopy arthropods. This study examined possible host habitat specialization in two major groups of soil arthropods, the oribatid and mesostigmatid mites, by sampling beneath three tree species: Eucalyptus pilularis Smith, Eucalyptus propinqua Deane and Maiden and Allocasuarina torulosa (Aiton) L. Johnson. The sample sites were in the Lansdowne State Forest, New South Wales, Australia and the three tree species were selected on the basis of their known differential effects on soil. Sampling was conducted over three seasons, and 79 oribatid and 34 mesostigmatid species were identified from 25 196 and 3634 individuals, respectively. Tree species had little effect on mite species composition with only three oribatid species and no mesostigmatid species identified as host‐habitat specialists using a niche breadth measure. Of mite species found under E. pilularis, E. propinqua and A. torulosa trees, 2%, 1% and 0% were defined as host‐habitat specialists, respectively. In contrast, tree species had significant and consistent effects on mite community structure, which differed in relative abundance of the oribatid species, their size class distributions and species rankings. In the mesostigmatid communities, there was a difference in the ranking of the mite species among tree species. Although it was demonstrated that tree species have an impact on the soil environment, the differences between tree species were insufficient to change species composition. The low degree of host‐habitat specialization suggested that other factors were more important for determining mite species composition at a site, and soil mite host‐habitat specialization may not make a large contribution to estimates of total global species richness using methods such as those proposed by Erwin (1982) .  相似文献   

10.
D. Prat 《Plant and Soil》1989,113(1):31-38
In greenhouse experiments plants of eightAlnus species, from various parts of the world, and from different taxonomic sections, were inoculated with threeFrankia strains in order to show any possible interaction. Mixtures in equal parts of theseFrankia strains were also tried. The growth of inoculated plants was significantly higher than of the controls, with one of the three strains being superior. Mixtures of strains generally provided higher growth than the best individual strain. No interaction betweenFrankia strains andAlnus species was detected in the young plants 60 days after inoculation. Three clones ofAlnus glutinosa were inoculated with the same pure cultures ofFrankia, without producing any interaction. Inoculation time was studied in one clone and one progeny ofAlnus glutinosa. The best results were obtained with the earlier inoculation (at sowing for the progeny and at transfer to soil for thein vitro-propagated clone). The results are discussed in terms of nursery practice and field experiments for selection in breeding programmes.  相似文献   

11.
Summary Alnus species are used widely in Britain for land reclamation, forestry and other purposes. Rapid juvenile growth of the AmericanAlnus rubra makes it an attractive species for planting on N-deficient soils, particularly those of low organic content. In small plot trials, this species is nodulated by indigenous soil frankiae as effectively asAlnus glutinosa. Over a three year period both species return similar amounts of N to the ecosystem, estimated at up to 10–12 kg N ha–1. Several strains ofFrankia have been isolated from local (Lennox Forest)A. rubra nodules. These differ morphologically and in their growth on different culture media, both from each other and fromA. glutinosa nodule isolates. AllAlnus isolates, however, have a total cellular fatty acid composition qualitatively similar to some other Group B frankiae. Glasshouse tests in N free culture suggest thatA. rubra nodules formed after inoculation of seedlings with American spore (–) isolates are three times more effective in N fixation than those inoculated with LennoxA. rubra spore (+) nodule homogenates. By contrast, the early growth of seedlings inoculated with spore (–)Frankia strains suggests at best a 35% improvement in N fixing activity over seedlings inoculated with LennoxA. rubra nodule isolates. Nevertheless, this improvement in activity, together with the better performance of seedlings inoculated with isolates compared with those treated with crushed nodule preparations, suggest that it would be worthwhile commercially to inoculate nursery stock with a spore (–)Frankia strain.  相似文献   

12.
Larval digenetic trematodes commonly castrate their first intermediate hosts, and should therefore impose strong selection on the timing and mode of host reproduction. Here we examine spatial variation in infection by trematodes in the freshwater snail Potamopyrgus antipodarum. Snails were collected at 11 different sites at Lake Alexandrina on the South Island of New Zealand from transects that ran perpendicular to the shore and across several different habitat types (from 0 to 8 m deep). Logistic regression was used to analyze the relationships between the frequency of trematode infection and snail size, habitat type, and transect location. On average, the probability of infection increased 3.3 times with each 1 mm increase in shell length. Prevalence of infection by the most common species of trematode, Microphallus sp., was highest in the shallow-water habitats where its final hosts (waterflow) spend most of their time. Prevalence of infection by another parasite, Telogaster ophistorchis (final host: eels) increased with depth, but because Microphallus was much more common, total infection by all trematodes decreased with depth. The effects of transect location were minor for Telogaster, but there was significant variation in Microphallus prevalence among transects, especially in the shore-bank habitat. Taken together, these results suggest that the risk of infection is spatially variable, but generally higher in shallow-water habitats, which may explain the greater frequency of sexual individuals as well as earlier reproduction among individuals near shore.  相似文献   

13.
Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among‐habitat and within‐habitat iFD (i.e., among‐ and within‐plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short‐term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red‐backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their “primary habitat”). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within‐habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within‐habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.  相似文献   

14.
Jensen WE  Cully JF 《Oecologia》2005,142(1):136-149
Local distributions of avian brood parasites among their host habitats may depend upon conspecific parasite density. We used isodar analysis to test for density-dependent habitat selection in brown-headed cowbirds (Molothrus ater) among tallgrass prairie adjacent to wooded edges, and prairie interior habitat (>100 m from wooded edges) with and without experimental perches. Eight study sites containing these three habitat treatments were established along a geographical gradient in cowbird abundance within the Flint Hills region of Eastern Kansas and Oklahoma, USA. The focal host species of our study, the dickcissel (Spiza americana), is the most abundant and preferred cowbird host in the prairie of this region. Cowbird relative abundance and cowbird:host abundance ratios were used as estimates of female cowbird density, whereas cowbird egg density was measured as parasitism frequency (percent of dickcissel nests parasitized), and parasitism intensity (number of cowbird eggs per parasitized nest). Geographical variation in cowbird abundance was independent of host abundance. Within study sites, host abundance was highest in wooded edge plots, intermediate in the experimental perch plots, and lowest in prairie interior. Cowbirds exhibited a pattern of density-dependent selection of prairie edge versus experimental perch and interior habitats. On sites where measures of cowbird density were lowest, all cowbird density estimates (female cowbirds and their eggs) were highest near (100 m) wooded edges, where host and perch availability are highest. However, as overall cowbird density increased geographically, these density estimates increased more rapidly in experimental perch plots and prairie interiors. Variation in cowbird abundance and cowbird:host ratios suggested density-dependent cowbird selection of experimental perch over prairie interior habitat, but parasitism levels on dickcissel nests were similar among these two habitats at all levels of local cowbird parasitism. The density-dependent pattern of cowbird distribution among prairie edge and interior suggested that density effects on perceived cowbird fitness are greatest at wooded edges. A positive relationship between daily nest mortality rates of parasitized nests during the nestling period with parasitism intensity levels per nest suggested a density-dependent effect on cowbird reproductive success. However, this relationship was similar among habitats, such that all habitats should have been perceived as being equally suitable to cowbirds at all densities. Other unmeasured effects on cowbird habitat suitability (e.g., reduced cowbird success in edge-dwelling host nests, cowbird despotism at edges) might have affected cowbird habitat selection. Managers attempting to minimize cowbird parasitism on sensitive cowbird hosts should consider that hosts in otherwise less-preferred cowbird habitats (e.g., habitat interiors) are at greater risk of being parasitized where cowbirds become particularly abundant.  相似文献   

15.
Abstract.
  • 1 Seasonal population growth rates for the pea aphid, Acyrthosiphon pisum Harris, were determined in three different host plant habitats; alfalfa, Medicago sativa (L.), clover, Trifolium pratense (L.), and peas, Pisum sativum (L.); over four years and eight places. It was possible to estimate a common intrinsic rate of increase for each host plant habitat.
  • 2 An analysis of the relative influence of temporal, spatial and host plant habitat variation showed that the host plant habitat was most important in determining the growth rates of the populations, both in rate of build-up and decline.
  • 3 Patterns of alate production in the three different habitats differed substantially between the annual peas and the two perennial legumes. During the summer, alate production was large and rapid in peas and remained low and constant in clover and alfalfa
  • 4 Parasitism was highest in peas. The species composition of parasitoids differed between crops.
  • 5 Aphids in annual peas had a higher intrinsic rate of increase and a faster rate of decline than in the two perennial legumes. This explains the presence of both migratory and sedentary forms among pea aphids.
  相似文献   

16.
Although variation in oviposition preference and specificity for host plants has been demonstrated within populations of a variety of oligophagous insect species, it is unknown whether genetic variation in host choice is lost within populations of monophagous species. Analysis of a locally monophagous butterfly species, Papilio oregonius, and a locally oligophagous species, P. zelicaon, showed significant variation in oviposition preference within populations of both species. Females of both species chose primarily their native hosts. Nonetheless, the percentages of eggs laid by individual females among the plant species and the number of plant species on which individual females laid eggs differed significantly among isofemale strains within populations. Moreover, some females within all isofemale strains of both species laid a few eggs on Foeniculum vulgare, an umbelliferous species that does not occur in the native habitats of these populations but is a host for Papilio species in other geographic areas. The results suggest that local monophagy and oligophagy in these species reflect the relative ranking among potential plant species. Both populations harbor variation in oviposition choice that could allow for host shifts if these populations invaded new habitats.  相似文献   

17.
The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.  相似文献   

18.
The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral‐associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.  相似文献   

19.

We studied the distribution of chigger mite species over mammal hosts, attachment sites on the host body, habitats, and seasons in Iran. The study was based on 2155 specimens of 36 chigger species collected from 10 species of Muridae, Cricetidae, and Soricidae across six provinces of northern Iran. A high level of mixed infestation by chiggers was recorded—76% of hosts parasitized by chiggers were infested by more than one (2–8) species. Statistically significant differences in the preference for anterior and posterior parts of the host body were found. Three species—Neotrombicula lubrica, N. delijani, and Cheladonta firdousii—preferred the posterior part of the host body; 12 species were characterized by the occurrence in the anterior part and differed from one another by the frequency of presence in the posterior part. One species, Hirsutiella alpina, was found only in the anterior part of the host body (inside the ears of rodents). The most diverse chigger fauna was on the fringe of Golestan National Park (species richness?=?21, Shannon–Wiener index?=?2.823). The chigger fauna of the high-mountain localities on the Alborz Range was the least diverse (species richness?=?16, Shannon–Wiener index?=?2.439). The seasonal aspect of activity was evident for Neotrombicula elegans, which exposed the autumn–winter period of the occurrence on hosts, and N. vernalis, with the winter-spring peak of abundance.

  相似文献   

20.
The 23S rRNA gene was evaluated as target for the development of Sybr Green-based quantitative PCR (qPCR) for the analysis of nitrogen-fixing members of the genus Frankia or subgroups of these in soil. A qPCR with a primer combination targeting all nitrogen-fixing frankiae (clusters 1, 2 and 3) resulted in numbers similar to those obtained with a previously developed qPCR using nifH gene sequences, both with respect to introduced and indigenous Frankia populations. Primer combinations more specifically targeting three subgroups of the Alnus host infection group (cluster 1) or members of the Elaeagnus host infection group (cluster 3) were specific for introduced strains of the target group, with numbers corresponding to those obtained by quantification of nitrogen-fixing frankiae with both the 23S rRNA and nifH genes as target. Method verification on indigenous Frankia populations in soils, i.e. in depth profiles from four sites at an Alnus glutinosa stand, revealed declining numbers in the depth profiles, with similar abundance of all nitrogen-fixing frankiae independent of 23S rRNA or nifH gene targets, and corresponding numbers of one group of frankiae of the Alnus host infection only, with no detections of frankiae representing the Elaeagnus, Casuarina, or a second subgroup of the Alnus host infection groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号