首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin from individual isolated mouse islets of Langerhans   总被引:1,自引:0,他引:1  
  相似文献   

2.
The ATP-sensitive potassium channel (KATP) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic β-cells. The pancreatic KATP channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1). Loss-of-function mutations in either subunit often lead to the development of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). PHHI is a rare genetic disease and most patients present with immediate onset within the first few days after birth. In this study, we report an unusual form of PHHI, in which the index patient developed hyperinsulinemic hypoglycemia after 1 year of age. The patient failed to respond to routine medication for PHHI and underwent a complete pancreatectomy. Genotyping of the index patient and his immediate family members showed that the patient and other family members with hypoglycemic episodes carried a heterozygous novel mutation in KCNJ11 (C83T), which encodes Kir6.2 (A28V). Electrophysiological and cell biological experiments revealed that A28V hKir6.2 is a dominant-negative, loss-of-function mutation and that KATP channels carrying this mutation failed to reach the cell surface. De novo protein structure prediction indicated that this A28V mutation reoriented the ER retention motif located at the C-terminal of the hKir6.2, and this result may explain the trafficking defect caused by this point mutation. Our study is the first report of a novel form of late-onset PHHI that is caused by a dominant mutation in KCNJ11 and exhibits a defect in proper surface expression of Kir6.2.  相似文献   

3.
Monolayer cell cultures were obtained from a human insulinoma (HIN) after collagenase digestion. HIN cells were initially plated on extracellular matrix (ECM) secreted by bovine corneal endothelial cells. Capsular integrity from cell clusters quickly interrupted and cell began to migrate as adhesive sheets onto ECM. After 2 months on ECM cell attachment and proliferation occurred on plastic allowing cloning of cells by limiting dilution. 9 clones were successfully cultured for 7 months with 20 subsequent passages. Immunoreactivity for insulin by indirect immunofluorescence typical secretory granules by electron microscopy and stable amounts of immunoreactive insulin in culture media suggest that HIN cells are beta cell related. One clone HIN D8 when challenged for half an hour with either 30 mM glucose, 1 mM isobutyl Methylxanthine 4 mM Tolbutamide, 10(-6) M glucagon responded respectively with a 1.5, 2, 3 and 1.5 fold increase in insulin output. Population doubling time of HIN D8 was 42 hrs. Establishment of such insulin secreting cell lines provides a valuable tool for diabetes research.  相似文献   

4.
Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet beta-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted to disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfonylurea receptor are required for normal regulation of beta-cell ATP-dependent potassium channel activity and insulin secretion.  相似文献   

5.
Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a rare, autosomal recessive disease of unregulated insulin secretion, defined by elevations in serum insulin despite severe hypoglycemia. We used the homozygosity gene-mapping strategy to localize this disorder to the region of chromosome 11p between markers D11S1334 and D11S899 (maximum LOD score 5.02 [theta = 0] at marker D11S926) in five consanguineous families of Saudi Arabian origin. These results extend those of a recent report that also placed PHHI on chromosome 11p, between markers D11S926 and D11S928. Comparison of the boundaries of these two overlapping regions allows the PHHI locus to be assigned to the 4-cM region between the markers D11S926 and D11S899. Identification of this gene may allow a better understanding of other disorders of glucose homeostasis, by providing insight into the regulation of insulin release.  相似文献   

6.
7.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

8.
Melittin , an amphipathic polypeptide, stimulated the secretion of insulin from rat islets of Langerhans incubated in vitro . The secretory response was dose-dependent and saturable with half the maximal response elicited by a melittin concentration of 4 g/ml. The response was rapid in onset, an increase in secretion occurring within 2 rain of exposure of the islets to melittin (2 g/ml). An enhanced secretory rate could be maintained for at least 40 rain in the presence of melittin but declined steadily when the agent was removed. Stimulation of secretion by melittin occurred in the absence of glucose and in the presence of both 4 mM and 8 mM glucose but not in the presence of 20 mM glucose. The effect of melittin on secretion was dependent on the presence of extracellular calcium but was not inhibited by norepinephrine. The data suggest that melittin may be a valuable agent for further study of the role played by the B-cell plasma membrane in the regulation of insulin secretion.  相似文献   

9.
In isolated rat islets the 2-adrenergic antagonist phenoxybenzamine was found to be only partially effective at relieving the inhibition of glucose-induced insulin secretion mediated by noradrenaline. Further experiment revealed a direct inhibitory effects of phenoxybenzamine itself on the secretory response to glucose. At concentrations above 1 M the antagonist inhibited insulin secretion in a dose-dependent manner, with greater than 50% inhibition at 50 M. The inhibition of secretion developed rapidly in perifused islets, and was not altered when islets were also incubated with idazoxan or benextramine, suggesting that it did not reflect binding of phenoxybenzamine to the 2-receptor. Paradoxically phenoxybenzamine significantly increased the basal secretion rate in the presence of 4 mM glucose. The results demonstrate that phenoxybenzamine can exert direct effects on insulin secretion which are unrelated to its -antagonist properties.  相似文献   

10.
Pancreatic islets of Langerhans were perifused with Krebs-bicarbonate solution containing glucose (5 and 10 mM). The perifusate was spiked with tetradeuterated hepoxilin A3 and was extracted and analysed by gas chromatography-mass spectrometry using NICI detection. Evidence is presented showing the presence of hepoxilin A3 as the hydrolysis product trioxilin A3. These results demonstrate for the first time that this pathway is active in intact cells; this finding, taken together with our previous evidence that hepoxilins possess insulin secretagogue properties further supports our hypothesis that these products could play a role as endogenous mediators of insulin release.  相似文献   

11.
SEL1L, a human gene located on chromosome 14q24.3-q31, is highly expressed in adult pancreas. It is proximal to D14S67 (IDDM11) a proposed type I diabetes susceptibility locus. Considering the organ specific expression of SEL1L, a fundamental role of SEL1L in pancreatic growth can be hypothesized. While screening for mutations in young diabetic patients, in children affected by persistent hyperinsulinemic hypoglycemia of infancy (PHHI), in patients with non-functional endocrine tumours and in over 100 control subjects, we identified a novel polymorphism (D162G) residing on the fourth exon of the gene. This exon encodes for the fibronectin type II domain and the nucleotide change involves a highly conserved amino acid. The D162G polymorphism induces a major change in the amino acid composition producing a possible disruptive role in collagen binding.  相似文献   

12.
The release of carboxypeptidase H activity from isolated rat islets was determined and compared to the secretion of immunoreactive insulin. Analysis of pancreatic islet cells sorted into beta and non-beta types indicated that approx. 80% of islet carboxypeptidase H activity is present in the beta cell. The release of both insulin and carboxypeptidase H was stimulated markedly by increasing the glucose concentration in the medium from 2.8 to 28 mM. The fractional release was in accordance with the observed cellular distribution of both proteins. The secretory response was biphasic with time, with an initial rapid transient phase of release within 5 min, followed by a more sustained response. The concentration-dependencies of glucose stimulation of release of insulin and carboxypeptidase H were similar, with a threshold for stimulation around 5.6 mM-glucose and maximal stimulatory response at 16.7-28 mM-glucose. The release of both proteins was inhibited by 20 mM-mannoheptulose, removal of Ca2+ from the medium and addition of 1 microM-noradrenaline. The combination of 10 mM-4-methyl-2-oxopentanoate and 10 mM-glutamine stimulated the release of carboxypeptidase H and insulin, as did 3-isobutyl-1-methylxanthine and 350 microM-tolbutamide in the presence of glucose. It is evident that carboxypeptidase H is released from the pancreatic beta-cell by an exocytotic process from the same intracellular compartment as insulin. The release of carboxypeptidase H by a constitutive process was at best equivalent to 0.4%/h, or less than 2% of the maximal rate of release via the regulated pathway. It is concluded that carboxypeptidase H can be used as a sensitive index of beta-cell secretion and an alternative marker to the insulin-related peptides.  相似文献   

13.
The effects of L-asparaginase were evaluated on glucose-induced insulin release from isolated rat islets of Langerhans. Islets were obtained by enzymatic digestion of pancreas from Sprague-Dawley rats. The study of L-asparaginase effects on insulin secretion was performed in a static incubation of islets. Insulin secretion was measured at 60 min of incubation with different secretagogues with and without L-asparaginase. L-Asparaginase at concentrations from 310 to 5,000 U/ml could inhibit the glucose-induced insulin secretion in a dose-dependent manner. This effect was not recovered after incubation in the absence of the drug for another 2 h. The half-maximal inhibitory effect of the enzyme on insulin secretion was observed at L-asparaginase concentrations of 1,000 U/ml. Tolbutamide (200 microM) and ketoisocaproic acid (20 mM) did not induce insulin secretion in the presence of moderately high L-asparaginase concentrations. L-Asparaginase did not inhibit glucose-induced insulin secretion in the presence of isobutyl-methyl-xanthine (IBMX) (20 microM) or forskolin (20 microM). L-Asparaginase promoted a decrease in total c-AMP in isolated rat islets at concentrations from 500 to 1,500 U/ml when they were stimulated by glucose. If islets were treated with IBMX or forskolin, L-asparaginase did not inhibit the glucose-induced total c-AMP levels in islets.  相似文献   

14.
There is no consensus on the role of insulin secreted from pancreatic β-cells in regulating its own secretion, either in rodent islets or in human islets. We have now investigated whether there is an autocrine signalling role for insulin in human islets by determining insulin receptor expression and assessing the effects of insulin receptor activation using a non-peptidyl insulin mimetic termed L-783,281. Human insulin receptor mRNA was detected by PCR amplification of human islet cDNA, and translation of the message in human islets was confirmed by Western blotting. Perifusion experiments revealed that both glucose-stimulated and basal insulin secretion were significantly inhibited following human islet insulin receptor activation with L-783,281, and that signalling through phosphatidylinositol 3-kinase (PI 3-kinase) was responsible, at least in part, for this inhibitory effect. These studies indicate that human islets express insulin receptors and that they are functionally coupled to a PI 3-kinase-dependent inhibition of insulin secretion.  相似文献   

15.
16.
Phalloidin, which stabilizes F-actin, has no effect on insulin secretion from intact islets, but penetrates and increases secretion from islets previously made permeable using a high voltage discharge technique. Use of this highly specific drug strongly suggests a role for microfilaments composed of F-actin in the insulin secretory process.  相似文献   

17.
Taxol, a promotor of microtubule polymerization, and nocodazole, which induces microtubule depolymerization, used at concentrations known to be specific for these effects in other cell types, were each shown to inhibit glucose-stimulated insulin secretion from isolated rat islets of Langerhans. These findings suggest that the dynamic regulation of microtubule polymerization-depolymerization in pancreatic B ceils may be important for insulin secretion via the microtubule-microfilamentous system.  相似文献   

18.
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ~13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ~10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.  相似文献   

19.
delta-Haemolysin, a small surface-active polypeptide purified from the culture media of Staphylococcus aureus, was observed to stimulate the release of insulin from isolated rat islets of Langerhans. This effect was dose-dependent and saturable, with the half-maximal response elicited by a delta-haemolysin concentration of 10 micrograms/ml. Stimulation of insulin release by delta-haemolysin (10 micrograms/ml) was not dependent on the presence of glucose in the incubation medium, but was augmented by increasing concentrations of the sugar. The release of insulin in response to delta-haemolysin could be inhibited by depletion of extracellular Ca2+ or by adrenaline (epinephrine) (10 microM) and was readily reversible when delta-haemolysin was removed from the medium. In addition, the response was potentiated by incubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.2 mM). These observations suggest that delta-haemolysin induced a true activation of the beta-cell secretory mechanism. Stimulation of islets of Langerhans with delta-haemolysin was found to be associated with a modest increase in intracellular cyclic AMP levels, although the adenylate cyclase activity of islet homogenates was not increased by delta-haemolysin. delta-Haemolysin was observed to induce a dose-dependent net accumulation of 45Ca2+ by islet cells and to stimulate the efflux of 45Ca2+ from preloaded islets. The efflux of 45Ca2+ was modest in size and short-lived, but dramatically increased in medium depleted fo 40Ca2+. Incubation in the presence of verapamil augmented delta-haemolysin-induced 45Ca2+ efflux and insulin secretion. delta-Haemolysin was found to be a potent 45Ca2+-translocating ionophore in an artificial system. This response was dose-dependent and could be augmented by verapamil. In addition, phosphatidylcholine (25 micrograms/ml) was found to inhibit both delta-haemolysin induced 45Ca2+ translocation and insulin release in a precisely parallel manner. These studies suggest that the ability of delta-haemolysin to stimulate insulin release may be due, in part, to the facilitation of Ca2+ entry into the beta-cells of islets of Langerhans, mediated directly by an ionophoretic mechanism.  相似文献   

20.
Phosphate affects glucose tolerance, insulin release and peripheral insulin sensitivity. In the present study moderate changes in the phosphate concentration of the incubation medium from 0.3 to 2 mmol/l (i.e., within the physiological range) did not affect insulin release from isolated mouse islets in vitro. In addition, the vitamin-D status of the animals had no effect on the glucose-stimulated insulin response in the different phosphate concentrations. Therefore these data indicate that the impaired glucose tolerance seen in hypophosphatemic states is not due to a direct effect of phosphorus levels on the insulin-releasing B-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号