首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effects of passive heat exposure on atrial natriuretic peptide (ANP) were studied in six healthy men staying in a Finnish sauna at +92 degrees C for 20 min. Their rectal temperature increased by 0.4 degrees C, and evaporative water loss was 0.92 +/- 0.14 (SD) kg. Heart rate and systolic blood pressure increased significantly during the 20-min exposure. Serum osmolality and plasma arginine vasopressin levels increased during the exposure, then declined, and increased significantly again at 90-120 min. Plasma renin activity and aldosterone increased by two- to fourfold in 20 min. Plasma ANP levels rose from 13 +/- 7 to 39 +/- 15 ng/l at 60 min and to 41 +/- 13 ng/l at 120 min (P less than 0.01 for both). We conclude that transient increases in heart rate and systolic blood pressure or changes in blood volume as inferred from the weight loss do not contribute to the increased plasma ANP levels observed after the heat exposure. Instead, increased secretions of pressor hormones could explain the elevated plasma ANP levels observed after the thermal stress.  相似文献   

2.
Many ectotherms regularly experience considerable short-term variations in environmental temperature, which affects their body temperature. Here we investigate the cardiovascular responses to a stepwise acute temperature increase from 10 to 13 and 16 degrees C in rainbow trout (Oncorhynchus mykiss). Cardiac output increased by 20 and 31% at 13 and 16 degrees C, respectively. This increase was entirely mediated by an increased heart rate (fH), whereas stroke volume (SV) decreased significantly by 20% at 16 degrees C. The mean circulatory filling pressure (MCFP), a measure of venous capacitance, increased with temperature. Central venous pressure (Pven) did not change, whereas the pressure gradient for venous return (MCFP-Pven) was significantly increased at both 13 and 16 degrees C. Blood volume, as measured by the dilution of 51Cr-labeled red blood cells, was temperature insensitive in both intact and splenectomized trout. This study demonstrates that venous capacitance in trout decreases, but cardiac filling pressure as estimated by Pven does not change when cardiac output increases during an acute temperature increase. SV was compromised as fH increased with temperature. The decreased capacitance likely serves to prevent passive pooling of blood in the venous periphery and to maintain cardiac filling pressure and a favorable pressure gradient for venous return.  相似文献   

3.
Twelve young women, athletes (n = 6) and nonathletes (n = 6), walked on a treadmill at loads equivalent to approximately 30% Vo2 max for two 50-min periods in three environments: 1) 28 degrees C, 45% rh, 2) 35 degrees C, 65% rh, and 3) 48 degrees C, 10% rh. There were no differences between groups in rectal temperature, heart rate, evaporative heat loss, or mean skin temperature at 28 or 35 degrees C or during the first work period in the 48 degrees C environment. However, a significantly lower cardiac output (Q) and stroke volume (SV) observed for nonathletes by the 46th min of work at 48 degrees C may explain why no nonathletes were able to complete a 2nd h of work while four of six athletes successfully finished the period. It appears that in conditions of severe heat stress (48 degrees C) athletes were able to maintain a cardiac output sufficient to meet the metabolic requirements and the large increase in peripheral blood flow for a longer period of time than nonathletes.  相似文献   

4.
Five healthy men exercised at 65-70% of maximum O2 uptake (VO2 max) for 30 min in an ambient temperature of 30 degrees C. Duplicate experiments were conducted at three levels of plasma volume:control, hypovolemia, in which blood volume (BV) was reduced an average of 490 ml (9.7%) with diuretics, and hypervolemia, in which BV was increased an average of 440 ml (7.8%) by infusing an isotonic solution containing 5% human serum albumin. Marked venoconstriction occurred during exercise in all conditions and persisted despite large increases in deep body temperature. The degree of venoconstriction was similar during control and hypervolemic conditions, but was potentiated during hypovolemia. The observed venoconstriction appeared to consist of two components: an early one related to autonomic adjustments at the onset of exercise, and a later one possibly related to progressive decreases in cardiac filling. Heart rate, cardiac stroke volume (SV), and cardiac output during exercise were significantly affected by changes in BV. During hypovolemia the average differences from control values were 10 beats X min-1, -14 ml, and -2.2 l X min-1, respectively; during hypervolemia the differences from control were -7 X min-1, 10 ml, and 1.0 l X min-1, respectively. The pattern of SV over the course of exercise indicates that pooling of blood in veins may be quantitatively more important than plasma water loss in reducing cardiac filling pressure in the heat.  相似文献   

5.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

6.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

7.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

8.
Central venous pressure and cardiac function during spaceflight   总被引:1,自引:0,他引:1  
Early in spaceflight, anapparently paradoxical condition occurs in which, despite an externallyvisible headward fluid shift, measured central venous pressure is lowerbut stroke volume and cardiac output are higher, and heart rate isunchanged from reference measurements made before flight. This paperpresents a set of studies in which a simple three-compartment,steady-state model of cardiovascular function is used, providinginsight into the contributions made by the major mechanisms that couldbe responsible for these events. On the basis of these studies, weconclude that, during weightless spaceflight, the chest relaxes with aconcomitant shape change that increases the volume of the closed chestcavity. This leads to a decrease in intrapleural pressure, ultimately causing a shift of blood into the vessels of the chest, increasing thetransmural filling pressure of the heart, and decreasing the centralvenous pressure. The increase in the transmural filling pressure of theheart is responsible, through a Starling-type mechanism, for theobserved increases in heart size, left ventricular end-diastolicvolume, stroke volume, and cardiac output.

  相似文献   

9.
In the conscious rabbit, exposure to an air jet stressor increases arterial pressure, heart rate, and cardiac output. During hemorrhage, air jet exposure extends the blood loss necessary to produce hypotension. It is possible that this enhanced defense of arterial pressure is a general characteristic of stressors. However, some stressors such as oscillation (OSC), although they increase arterial pressure, do not change heart rate or cardiac output. The cardiovascular changes during OSC resemble those seen during freezing behavior. In the present study, our hypothesis was that, unlike air jet, OSC would not affect defense of arterial blood pressure during blood loss. Male New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood until mean arterial pressure decreased to 40 mmHg. We repeated the experiment in each rabbit on separate days in the presence and absence (SHAM) of OSC. Compared with SHAM, OSC increased arterial pressure 14 +/- 1 mmHg, central venous pressure 3.3 +/- 0.4 mmHg, and hindquarter blood flow 34 +/- 4% while decreasing mesenteric conductance 32 +/- 3% and not changing heart rate or cardiac output. During normotensive hemorrhage, OSC enhanced hindquarter and renal vasoconstriction. Contrary to our hypothesis, OSC (23.5 +/- 0.6 ml/kg) increased the blood loss necessary to produce hypotension compared with SHAM (16.8 +/- 0.6 ml/kg). In nine rabbits, OSC prevented hypotension even after a blood loss of 27 ml/kg. Thus a stressful stimulus that resulted in cardiovascular changes similar to those seen during freezing behavior enhanced defense of arterial pressure during hemorrhage.  相似文献   

10.
Dietary copper deficiency in animals is often associated with cardiac enlargement and anemia. In this study we examined the hypothesis that anemia leads to a high cardiac output state that results in work-induced (physiological) cardiac hypertrophy. Blood pressure was measured by carotid cannulation and cardiac output was measured by aortic flow probe in anesthetized, open-chested rats that had been subjected to various degrees of dietary copper deficiency for five weeks. Cardiac output was unaffected by dietary copper deficiency. However, the components of cardiac output were found to vary reciprocally, heart rate decreasing and stroke volume increasing with copper deficiency. Further, total peripheral resistance, calculated as the ratio of mean arterial blood pressure and cardiac output, was depressed by dietary copper deficiency. These findings suggest that bradycardia and depression of vascular resistance induced by copper deficiency contribute to increased venous filling and a resultant increase in stroke volume; these factors may lead to cardiac hypertrophy. A significant correlation between stroke volume and heart weight in rats of varying copper status supports this conclusion.  相似文献   

11.
Serial measurements of cardiac output and mean arterial pressure were performed in 15 women during the first stage of labour and at one and 24 hours after delivery. Cardiac output was measured by Doppler and cross sectional echocardiography at the pulmonary valve. Basal cardiac output (between uterine contractions) increased from a prelabour mean of 6.99 l/min to 7.88 l/min at greater than or equal to 8 cm of cervical dilatation as a result of an increase in stroke volume. Over the same period basal mean arterial pressure also increased. During uterine contractions there was a further increase in cardiac output as a result of increases in both stroke volume and heart rate. The increment in cardiac output during contractions became progressively greater as labour advanced. At greater than or equal to 8 cm of dilatation cardiac output increased from a basal mean of 7.88 l/min to 10.57 l/min during contractions. There were also further increases in mean blood pressure during contractions. One hour after delivery heart rate and cardiac output had returned to prelabour values, though mean arterial pressure and stroke volume remained raised. By 24 hours after delivery all haemodynamic variables had returned to prelabour values. Haemodynamic changes of the magnitude found in this series are of considerable clinical relevance in managing mothers with complicated cardiovascular function.  相似文献   

12.
Heart output, arterial pressures, and heart rate were measured directly in conscious unrestrained eels (Anguilla australis) and responses to intra-arterial injection of adrenaline monitored. Adrenaline increased systemic vascular resistance, heart output, and cardiac stroke volume in all animals. In some cases small transient decreases in stroke volume and hence heart output were seen at the peak of the pressor response: These probably reflect a passive decrease in systolic emptying due to increased afterload on the heart. In most cases, adrenaline produced tachycardia; but two animals showed consistent and profound reflex bradycardia, which was accompanied by a concomitant increase in stroke volume such that heart output was maintained or increased slightly. The interaction of changes in heart output and systemic vascular resistance produced complex and variable changes in arterial pressure. There was no consistent pattern of changes in branchial vascular resistance. Atropine treatment in vivo revealed vagal cardio-inhibitory tone in some animals and always blocked the reflex bradycardia seen during adrenaline induced hypertension. In some animals, adrenaline injection after atropine pretreatment led to the establishment of cyclic changes in arterial pressure with a period of about 1 min (Mayer waves).  相似文献   

13.
Effects of positive end-expiratory pressure on the right ventricle   总被引:2,自引:0,他引:2  
Transmural cardiac pressures, stroke volume, right ventricular volume, and lung water content were measured in normal dogs and in dogs with oleic acid-induced pulmonary edema (PE) maintained on positive-pressure ventilation. Measurements were performed prior to and following application of 20 cmH2O positive end-expiratory pressure (PEEP). Colloid fluid was given during PEEP for ventricular volume expansion before and after the oleic acid administration. PEEP significantly increased pleural pressure and pulmonary vascular resistance but decreased right ventricular volume, stroke volume, and mean arterial pressure in both normal and PE dogs. Although the fluid infusion during PEEP raised right ventricular diastolic volumes to the pre-PEEP level, the stroke volumes did not significantly increase in either normal dogs or the PE dogs. The fluid infusion, however, significantly increased the lung water content in the PE dogs. Following discontinuation of PEEP, mean arterial pressure, cardiac output, and stroke volume significantly increased, and heart rate did not change. The failure of the stroke volume to increase despite significant right ventricular volume augmentation during PEEP indicates that positive-pressure ventilation with 20 cmH2O PEEP decreases right ventricular function.  相似文献   

14.
Operation Everest II: preservation of cardiac function at extreme altitude   总被引:8,自引:0,他引:8  
Hypoxia at high altitude could depress cardiac function and decrease exercise capacity. If so, impaired cardiac function should occur with the extreme, chronic hypoxemia of the 40-day simulated climb of Mt. Everest (8,840 m, barometric pressure of 240 Torr, inspiratory O2 pressure of 43 Torr). In the five of eight subjects having resting and exercise measurements at the barometric pressures of 760 Torr (sea level), 347 Torr (6,100 m), 282 Torr (7,620 m), and 240 Torr, heart rate for a given O2 uptake was higher with more severe hypoxia. Slight (6 beats/min) slowing of the heart rate occurred only during exercise at the lowest barometric pressure when arterial blood O2 saturations were less than 50%. O2 breathing reversed hypoxemia but never increased heart rate, suggesting that hypoxic depression of rate, if present, was slight. For a given O2 uptake, cardiac output was maintained. The decrease in stroke volume appeared to reflect decreased ventricular filling (i.e., decreased right atrial and wedge pressures). O2 breathing did not increase stroke volume for a given filling pressure. We concluded that extreme, chronic hypoxemia caused little or no impairment of cardiac rate and pump functions.  相似文献   

15.
Exercise-heat exposure results in significant sweat losses due to large biophysical requirements for evaporative heat loss. Progressive body water losses will increase plasma tonicity and decrease blood volume (hypertonic–hypovolemia). The result is reduced dry and evaporative heat exchange through alterations in the core temperature threshold for initiation of skin blood flow and sweating as well as changes in the sensitivity of these thermo-effectors. Regulation of reduced sweating conserves body water, which reduces heat loss and increases exercise hyperthermia, but the magnitude of this effect is modified by environmental heat transfer capabilities. The focus of this paper is to (1) examine the major mechanisms by which hypohydration alters thermoregulatory responses in the heat, and (2) illustrate how important differences in environmental airflow characteristics between laboratory and field settings may modify these effects.  相似文献   

16.
Thirty-two 4-week-old male Wistar rats were infected with Plasmodium berghei malaria. On Days 12 through 14, blood volume, arterial blood pressure, right ventricular pressure, heart rate, cardiac output, stroke volume, hematocrit, and vascular resistances were determined. All of the cardiovascular parameters measured, with the exception of calculated pulmonary vascular resistance, changed progressively as the peripheral blood parasitemia increased. With a rising parasitemia, cardiac output increased, despite a reduced heart rate. The highest parasitemia of 63% was accompanied by a doubling of the normal cardiac output. The relationship between parasitemia and cardiac output can be described by the equation, cardiac output = (6.14) x % parasitemia + 452 ml/min/kg. The mean arterial blood pressure was lower than controls when parasitemia exceeded 20%, whereas systolic right ventricular pressure was elevated only at the highest parasitemias. When noninfected control rats were compared with those animals having parasitemias greater than 40%, in the infected animals, mean arterial pressure was 28% lower (P less than 0.01) and systolic right ventricular pressure rose by 21% (P less than 0.02). A 50% decline was observed in the total peripheral vascular resistance (P less than 0.01), although the pulmonary resistance was apparently unchanged. With P. berghei infection, there is also a marked anemia, an increase in plasma volume, and a 16% increase in blood volume (% body weight). It is concluded from these results that although the hemodynamic changes previously reported in the literature indicate that infection with malaria may result in focal blockages in microvessels and poor tissue perfusion, the total systemic effect, in the rat, is an increase in cardiac output secondary to a reduced peripheral resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Progressively increasing heat stress ultimately results in heat stroke, a medical emergency leading to death if not treated properly. Initially in heat stress, enormous increases in blood flow and volume in skin (and muscle if exercising) are achieved by the diversion of blood away from the splanchnic bed, kidneys, and probably fat and muscle, and in some species such as man, there is also an increase in cardiac output. The onset of heat stroke is thought to involve a decrease in central venous pressure, which is defended by constriction in both arterioles and veins of the skin via low-pressure baroreceptors in the cardiopulmonary region. Body heat loss is thereby reduced and the consequent rise in body temperature causes death due to thermally evoked critical changes in central nervous system activity and/or fatal embolization following disseminated intravascular coagulation and erythrocyte sphering. Evidence is presented, which supports the proposal that cardiac filling pressure is the limiting factor in adjusting to heat stress.  相似文献   

18.
Vertebrate hearts from fish to mammals secrete peptide hormones with profound natriuretic, diuretic, and vasodilatory activity; however, the specific role of these cardiac natriuretic peptides (NPs) in homeostasis is unclear. NPs have been suggested to be involved in salt excretion in saltwater teleosts, whereas they are proposed to be more important in volume regulation in mammals. In this review, we consider an alternative (or perhaps complementary) function of NPs to protect the heart. This hypothesis is based on a number of observations. First, evidence for NPs, or NP-like activity has been found in all vertebrate hearts thus far examined, from osmoconforming saltwater hagfish to euryhaline freshwater and saltwater teleosts to terrestrial mammals. Thus the presence of cardiac NPs appears to be independent of environmental conditions that may variously affect salt and water balance. Second, cardiac stretch is a universal, and one of the most powerful, NP secretagogues. Furthermore, stretch-induced NP release in euryhaline teleosts appears relatively independent of ambient salinity. Third, excessive cardiac stretch that increases end-diastolic volume (EDV) can compromise the mechanical ability of the heart by decreasing actin-myosin interaction (length-tension) or through Laplace effects whereby as EDV increases, the wall tension necessary to maintain a constant pressure must also increase. Excessive cardiac stretch can be produced by factors that decrease cardiac emptying (i.e., increased arterial pressure), or by factors that increase cardiac filling (i.e., increased blood volume, increased venous tone, or decreased venous compliance). Fourth, the major physiological actions of cardiac NPs enhance cardiac emptying and decrease cardiac filling. In fish, NPs promote cardiac emptying by decreasing gill vascular resistance, thereby lowering ventral aortic pressure. In mammals a similar effect is achieved through pulmonary vasodilation. NPs also decrease cardiac filling by decreasing blood volume and increasing venous compliance, the latter producing a rapid fall in central venous pressure. Fifth, the presence of NP clearance receptors in the gill and lung (between the heart and systemic circulation) suggest that these tissues may be exposed to considerably higher NP titers than are systemic tissues. Thus, a decrease in outflow resistance immediately downstream from the heart may be the first response to increased cardiac distension. Because the physiology of cardiac NPs is basically the same in fish and mammals, we propose that the cardioprotective effects of NPs have been well preserved throughout the course of vertebrate evolution. It is also likely that the cardioprotective role of NPs was one of the most primordial homeostatic activities of these peptides in the earliest vertebrates.  相似文献   

19.
Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed acclimation to hypoxic conditions, apart from an increased heart rate, there were no other cardiovascular changes associated with the low salinity episode. The implications of these changes in cardiovascular dynamics are discussed in relation to physiological mechanisms and the ecology of decapod crustaceans, in hypoxic or low salinity environments.  相似文献   

20.
Cardiovascular and respiratory variables were recorded in the blue crab, Callinectes sapidus, during injury and subsequent autotomy of a chela. Cardiac function and haemolymph flow rates were measured using a pulsed-Doppler flowmeter. Oxygen uptake was recorded using an intermittent flow respirometry system. Crabs reacted to the loss of a chela with a rapid increase in heart rate, which was sustained for 2 h. Stroke volume of the heart also increased after the chela was autotomized. A combined increase in heart rate and stroke volume led to an increase in cardiac output, which was maintained for an hour after the loss of a chela. There was also differential haemolymph perfusion of various structures. There was no change in perfusion of the anterolateral arteries or posterior and anterior aortae, during injury of the chela or subsequent autotomy. Haemolymph flow rates did increase significantly through the sternal artery during injury and immediately following autotomy of the chela. This was at the expense of blood flow to the digestive gland: a sustained decrease in haemolymph flow through the hepatic arteries occurred for 3 h following autotomy. Fine-scale cardiac changes associated with the act of autotomy included a bradycardia and/or associated cardiac pausing before the chela was shed, followed by a subsequent increase in cardiac parameters. Changes in the cardiovascular physiology were paralleled by an increase in oxygen uptake, which was driven by an increased ventilation of the branchial chambers. Although limb loss is a major event, it appears that only acute changes in physiology occur. These may benefit the individual, allowing rapid escape following autotomy with a subsequent return to normal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号