首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

2.
Growth and toxin production by proteolytic and non-proteolytic strains of Clostridium botulinum have been followed in 28 cooked puréed vegetables prepared under strict anaerobic conditions and incubated at 30°C for up to 60 d. Toxin production was confirmed in 25 of the cooked vegetables inoculated with a suspension of spores of proteolytic strains of types A and B, and in 13 inoculated with a suspension of spores of non-proteolytic strains of types B, E and F. For both proteolytic and non-proteolytic strains, a trend was identified correlating growth and toxin production with the pH of the cooked puréed vegetables.  相似文献   

3.
Heat treatment of spores of non-proteolytic Clostridium botulinum at 85°C for 120 min followed by enumeration of survivors on a medium containing lysozyme resulted in a 4.1 and 4.8 decimal reduction in numbers of spores of strains 17B (type B) and Beluga (type E), respectively. Only a small proportion of heated spores formed colonies on medium containing lysozyme; this proportion could be increased by treatments designed to increase the permeability of heated spores. The results indicate that the germination system in spores of non-proteolytic Cl. botulinum was destroyed by heating, that lysozyme could replace this germination system, and that treatments that increased the permeability of the spore coat could increase the proportion of heated spores that germinated on medium containing lysozyme. These results are important in relation to the assessment of heat-treatments required to reduce the risk of survival and growth of non-proteolytic Clostridium botulinum in processed (pasteurized) refrigerated foods for extended storage.  相似文献   

4.
Refrigerated processed foods of extended durability rely on a mild heat treatment combined with refrigerated storage to ensure microbiological safety and quality. The principal microbiological safety risk in foods of this type is non-proteolytic Clostridium botulinum. In this article the combined effect of mild heat treatment and refrigerated storage on the time to growth and probability of growth from spores of non-proteolytic Cl. botulinum is described. Spores of non-proteolytic Cl. botulinum (two strains each of type B, E and F) were heated at 90°C for between 0 and 60 min and subsequently incubated at 5°, 10° or 30°C in PYGS broth in the presence or absence of lysozyme. The number of spores that resulted in turbidity depended on the combination of heat treatment, incubation time and incubation temperature they received. Heating at 90°C for 1 or more min ensured a 106 reduction when spores were subsequently incubated at 5°C for up to 23 weeks. Heating at 90°C for 60 min ensured a 106 reduction over 23 weeks when subsequent incubation was at 10°C in the presence of added lysozyme. The same treatment did not reduce the spore population by 106 when subsequent incubation was at 30°C.  相似文献   

5.
Low resolution pyrolysis gas-liquid chromatography could differentiate the following groups of Clostridium botulinum and related organisms: (1) Cl. botulinum type A. proteolytic types B and F and Cl. sporogenes ; (2) Cl. botulinum types C and D. and (3) Cl. botulinum type E and non-proteolytic types B and F. Toxin types A and B could be distinguished from type E and from type F.  相似文献   

6.
AIMS: The objective of the study was to evaluate the variability of germination response of 10 strains of proteolytic Clostridium botulinum. METHODS AND RESULTS: An automated turbidometric method was used to follow the fall in optical density. Spores of proteolytic Cl. botulinum germinated in response to l-alanine alone, with rate and extent of germination increased by addition of l-lactate or bicarbonate ions. Other hydrophobic amino acids also triggered germination of spores of proteolytic Cl. botulinum but not AGFK and inosine, germinants for Bacillus subtilis or B. cereus. CONCLUSIONS: Unlike spores of nonproteolytic Cl. botulinum, all proteolytic Cl. botulinum germinate in hydrophobic l-amino acids without l-lactate. However, a great variability of response to germinant is evidenced between the species. SIGNIFICANCE AND IMPACT OF THE STUDY: The selection of a model strain to study germination of Cl. botulinum spores should consider the variability in sensitivity to germinants shown in this work. In particular, the sequenced strain ATCC 3502 may not be the most appropriate model for germination studies.  相似文献   

7.
Nonproteolytic strains of Clostridium botulinum will grow at refrigeration temperatures and thus pose a potential hazard in minimally processed foods. Spores of types B, E, and F strains were used to inoculate an anaerobic meat medium. The effects of various combinations of pH, NaCl concentration, addition of lysozyme, heat treatment (85 to 95 degrees C), and incubation temperature (5 to 16 degrees C) on time until growth were determined. No growth occurred after spores were heated at 95 degrees C, but lysozyme improved recovery from spores heated at 85 and 90 degrees C.  相似文献   

8.
A monoclonal antibody-based amplified enzyme-linked immunosorbent assay (ELISA) method for detecting Clostridium botulinum type A toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated, 80 degrees C/5 min + 70 degrees C/2 h, before storage at 15 degrees, 20 degrees or 27 degrees C. The presence of specific toxin was confirmed by mouse bioassay and results compared with those of the amplified ELISA method. A total of 49 strains, 39 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 95 slurry samples were tested. Fourteen of 15 strains of type A Cl. botulinum and 34 of 36 slurry samples containing type A toxin were positive by ELISA. No false positive reactions occurred with Cl. botulinum types B, C, D, E and F, or with the 10 strains of Cl. sporogenes. However, toxin produced by one strain of Cl. botulinum type A (NCTC 2012) was not detected by the amplified ELISA.  相似文献   

9.
A monoclonal antibody-based amplified ELISA method for detecting Clostridium botulinum type B toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated 80 degrees C/5 min followed by 70 degrees C/2 h before incubation at 15 degrees, 20 degrees or 27 degrees C. Presence of specific toxin was confirmed by mouse bioassay and results were compared with those of the amplified ELISA method. A total of 48 strains, consisting of 38 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 140 slurry samples were tested. Cultures of eight out of nine strains of type B Cl botulinum and 73 of 101 slurry samples containing type B toxin were positive by ELISA; the remaining 28 slurry samples contained type B toxin at levels below or close to the detection limit (20 LD50/ml) of the type B ELISA. No false-positive reactions occurred with Cl. botulinum types A, C, D, E or F, or with the 10 strains of Cl. sporogenes. Toxin produced by one strain of Cl. botulinum type B (NCTC 3807) was not detected by this single monoclonal antibody-based amplified ELISA. With a mixture of two monoclonal antibodies, however, the toxin from NCTC 3807 could be detected without reducing the sensitivity of the ELISA.  相似文献   

10.
It has been reported that non-proteolytic strains of Clostridium botulinum will grow at 3.3 degrees C, and they are therefore of concern in relation to certain chilled foods. The effects of combinations of inhibitory factors may be used to reduce the risk of growth of these bacteria in foods. The combined effect of pH values between 4.8 and 7.0, temperatures between 6 degrees and 30 degrees C, and sorbic acid concentrations up to 2270 mg/l on the probability of growth from a single spore of non-proteolytic, type B strains in a culture medium has been determined. A mathematical model has been developed that enables the effect of varying combinations of these factors on the probability of growth of non-proteolytic, type B Cl. botulinum to be predicted.  相似文献   

11.
Germination and outgrowth of three strains of Clostridium botulinum in PYEG medium were measured by phase contrast microscopy. Reduction in pH from 7 to 5.5 completely inhibited germination of strain 12885A, reduced the extent of germination of strain 62A and had no effect on the extent of germination of strain 53B. At pH 5.5, 225 mg/l of undissociated sorbic acid had no effect on the germination of strain 53B, while at pH 6.5, 225 mg/l of undissociated sorbic acid completely inhibited germination of strains 62A and 12885A. Outgrowth of germinated spores of strains 62A and 53B was not inhibited at pH 5.5, but the addition of sorbate (225 mg/l undissociated sorbic acid) completely inhibited outgrowth. Sorbate inhibited germination of Cl. botulinum and Bacillus cereus spores triggered to germinate by amino acids. Inhibition occurred after germinant binding, as measured by commitment to germinate.  相似文献   

12.
Germination and outgrowth of three strains of Clostridium botulinum in PYEG medium were measured by phase contrast microscopy. Reduction in pH from 7 to 5·5 completely inhibited germination of strain 12885A, reduced the extent of germination of strain 62A and had no effect on the extent of germination of strain 53B. At pH 5·5, 225 mg/1 of undissociated sorbic acid had no effect on the germination of strain 53B, while at pH 6·5, 225 mg/1 of undissociated sorbic acid completely inhibited germination of strains 62A and 12885A. Outgrowth of germinated spores of strains 62A and 53B was not inhibited at pH 5·5, but the addition of sorbate (225 mg/1 undissociated sorbic acid) completely inhibited outgrowth. Sorbate inhibited germination of Cl. botulinum and Bacillus cereus spores triggered to germinate by amino acids. Inhibition occurred after germinant binding, as measured by commitment to germinate.  相似文献   

13.
L und , B.M., G raham , A.F., G eorge , S.M. & B rown , D. 1990. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum. Journal of Applied Bacteriology 69 , 481–492.
It has been reported that non-proteolytic strains of Clostridium botulinum will grow at 3.3°C, and they are therefore of concern in relation to certain chilled foods. The effects of combinations of inhibitory factors may be used to reduce the risk of growth of these bacteria in foods. The combined effect of pH values between 4.8 and 7.0, temperatures between 6° and 30°C, and sorbic acid concentrations up to 2270 mg/1 on the probability of growth from a single spore of non-proteolytic, type B strains in a culture medium has been determined. A mathematical model has been developed that enables the effect of varying combinations of these factors on the probability of growth of non-proteolytic, type B Cl. botulinum to be predicted.  相似文献   

14.
This study was conducted to examine the effects of 0.3-Mrad irradiation on growth and toxigenicity of Clostridium botulinum types A and B on chicken skins. Irradiation followed by aerobic or anaerobic incubation at 30 degrees C extended the shelf life of skin samples and delayed growth and toxin production by C. botulinum. During 2 weeks of incubation at 10 degrees C, the irradiated and nonirradiated C. botulinum spores failed to grow or produce toxin.  相似文献   

15.
This study was conducted to examine the effects of 0.3-Mrad irradiation on growth and toxigenicity of Clostridium botulinum types A and B on chicken skins. Irradiation followed by aerobic or anaerobic incubation at 30 degrees C extended the shelf life of skin samples and delayed growth and toxin production by C. botulinum. During 2 weeks of incubation at 10 degrees C, the irradiated and nonirradiated C. botulinum spores failed to grow or produce toxin.  相似文献   

16.
Heating spores of non-proteolytic strains of Clostridium botulinum at 85°C, followed by enumeration of survivors on a highly nutrient medium indicated a 5 decimal kill in less than 2 min. The inclusion of lysozyme or egg yolk emulsion in the recovery medium substantially increased apparent spore heat-resistance, with as little as 0.1 μg lysozyme/ml sufficient to give an increase in the number of survivors. After heating at 85°C for 2 min between 0.1% and 1% of the spores of 11 strains (5 type B, 4 type E, 2 type F) formed colonies on medium containing 10 μg lysozyme/ml. Enumeration of survivors on a medium containing lysozyme showed that heating at 85°C for 5 min resulted in an estimated 2.6 decimal kill of spores of strain 17B (type B). These findings are important in the assessment of heat-treatments required to ensure the safety with respect to non-proteolytic Clostridium botulinum of processed (pasteurized) refrigerated foods for extended storage such as sous-vide foods.  相似文献   

17.
A process that claims to use a double pasteurization to produce vacuum-packed potatoes for storage at ambient temperature has been evaluated. After the first pasteurization, potatoes are vacuum-packed and stored at 25 degrees-35 degrees C for up to 24 h, which is intended to allow germination of bacterial spores, and are then pasteurized again. When potatoes were inoculated with spores of Clostridium botulinum and subjected to this double-pasteurization process a high proportion of spores remained viable and resulted in growth and formation of toxin within 5-9 d at 25 degrees C. To provide an appropriate reduction in the risk o survival and growth of Cl. botulinum, peeled, vacuum-packed potatoes for storage at ambient temperature should be given a heat treatment equivalent to an F(0)3 process. If they are not given such a heat treatment they should be stored at a temperature below 4 degrees C.  相似文献   

18.
Spore germination and vegetative growth of Clostridium botulinum type E strain VH at 2 to 50 degrees C were studied. At all of these temperatures, germination began immediately after the addition of the spores to the germination medium. Microscopic observations during germination revealed three types of spores: phase bright (ungerminated), phase variable (partially germinated), and phase dark (fully germinated). At all temperatures except 50 degrees C, there was a pronounced lag between the initial appearance of phase-variable spores and their eventual conversion to phase-dark spores. The number of partially germinated spores increased steadily, reaching 40 to 60% by 18 to 21 h of incubation. During this time, phase-dark, fully germinated spores developed slowly and did not exceed 28% in any of the samples. At 18 to 26 h of incubation, the rate of full germination increased abruptly four-fold. There was extensive and relatively rapid germination at 2 degrees C, the lowest temperature tested, yielding about 60% phase-variable spores by 18 h, which became phase-dark by 26 h of incubation. The optimum temperature for partial and full germination was consistently 9 degrees C. Germination at 50 degrees C was exceptionally rapid and was completed within 1 to 2 h, although 40% remained phase bright. Vegetative cells showed detectable growth at 6 to 41 degrees C, with a distinct optimum at 32.5 degrees C. No growth occurred at 50 degrees C, and only marginal growth was observed at 6 to 14 degrees C. The psychrophilic nature of the germination process coupled with the cold tolerance of vegetative growth appears to give C. botulinum type E an advantage in cold climates as well as in cold-stored foods.  相似文献   

19.
Clostridium botulinum type A spores were inoculated at a level of 10(7) spores per ml into sterile beef media with protein concentrations of 1, 2, 3, 4, or 6% and acidified to pH values of 2.01 to 4.75 with hydrochloric acid or 4.19 to 4.60 with citric acid. All experimental manipulations, including blending, acidification, inoculation, incubation (30 degrees C), and analyses, were conducted in an anaerobic chamber-incubator in which atmospheric oxygen levels were maintained below 2 ppm (2 microliters/liter). Under these strict anaerobic conditions (oxidation-reduction values in media ranging from -370 to -391 mV), C. botulinum spores were consistently found to germinate, grow, and produce toxin below pH 4.6. The boundary between toxic and atoxic samples in HC1-acidified beef media was mediated by titratable acidity, pH, and protein concentration. A limiting acidity was not established for the citrate-acidified samples; all blends tested (1, 2, 3, and 4% protein and titratable acidities of 0.091 to 0.453%) became toxic within 5 weeks. At the same pH and protein concentration, citric acid was less effective than HC1 in preventing the germination of C. botulinum spores. Higher levels of cell proliferation in the beef protein, as well as enhanced gas production and putrefactive degradation, indicated that beef was a better substrate than soy for C. botulinum spores under these conditions. Reducing the inoculum to 10(4) delayed but did not prevent spore outgrowth and toxin release at pH levels below 4.6.  相似文献   

20.
Clostridium botulinum type A spores were inoculated at a level of 10(7) spores per ml into sterile beef media with protein concentrations of 1, 2, 3, 4, or 6% and acidified to pH values of 2.01 to 4.75 with hydrochloric acid or 4.19 to 4.60 with citric acid. All experimental manipulations, including blending, acidification, inoculation, incubation (30 degrees C), and analyses, were conducted in an anaerobic chamber-incubator in which atmospheric oxygen levels were maintained below 2 ppm (2 microliters/liter). Under these strict anaerobic conditions (oxidation-reduction values in media ranging from -370 to -391 mV), C. botulinum spores were consistently found to germinate, grow, and produce toxin below pH 4.6. The boundary between toxic and atoxic samples in HC1-acidified beef media was mediated by titratable acidity, pH, and protein concentration. A limiting acidity was not established for the citrate-acidified samples; all blends tested (1, 2, 3, and 4% protein and titratable acidities of 0.091 to 0.453%) became toxic within 5 weeks. At the same pH and protein concentration, citric acid was less effective than HC1 in preventing the germination of C. botulinum spores. Higher levels of cell proliferation in the beef protein, as well as enhanced gas production and putrefactive degradation, indicated that beef was a better substrate than soy for C. botulinum spores under these conditions. Reducing the inoculum to 10(4) delayed but did not prevent spore outgrowth and toxin release at pH levels below 4.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号