首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Escherichia coli has a unique enzyme, deoxyguanosine triphosphate triphosphohydrolase (dGTPase) that cleaves dGTP into deoxyguanosine and tripolyphosphate. An E. coli mutant, optA1, has a 50-fold increased level of the dGTPase (Beauchamp, B.B., and Richardson, C.C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 2563-2567). Successful infection of E. coli optA1 by bacteriophage T7 is dependent on a 10-kDa protein encoded by gene 1.2 of the phage. In this report we show that the gene 1.2 protein is a specific inhibitor of the E. coli dGTPase. Gene 1.2 protein inhibits dGTPase activity by forming a complex with the dGTPase with an apparent stoichiometry of two monomers of gene 1.2 protein/tetramer of dGTPase. The interaction is reversible with a half-life of the complex of 30 min and an apparent binding constant Ki of 35 nM. The binding of inhibitor of dGTPase is cooperative, indicating allosteric interactions between dGTPase subunits with a Hill coefficient of 1.7. The interaction is modulated differentially by DNA, RNA, and deoxyguanosine mono-, di-, and triphosphate. Both the binding of the substrate dGTP and of the inhibitor gene 1.2 protein induce conformational changes in dGTPase. The conformation of the enzyme in the presence of saturating concentrations of dGTP virtually prevents the association with, and the dissociation from, gene 1.2 protein.  相似文献   

2.
An intact cell assay system based on Tween-80 permeabilization was used to investigate ribonucleotide reductase activity in Chinese hamster ovary cells. Dithiothreitol, a reducing agent, is required for optimum activity. Analysis of dithiothreitol stimulation of CDP and ADP reductions indicated that in both cases the reducing agent served only to increase the reaction rate without altering the affinity of the enzyme for substrates. Magnesium chloride significantly stimulated the reduction of CDP but not ADP; this elevation in CDP reduction was due to an increase in both the affinity of the enzyme for substrate and the Vmax. In addition to ATP and dGTP, well-known activators of CDP and ADP reductase activities, it was found that dCTP and GTP were also able to activate CDP and ADP reductase activities, respectively. For the dCTP-activated reaction the Vmax was 0.158 nmol dCDP formed 5 X 10(6) cells-1 h-1 and the Km was 0.033 mM CDP, while for the GTP-activated reduction a Vmax of 0.667 nmol dADP formed 5 X 10(6) cells(-1) h-1 and Km of 0.20 mM ADP were observed. Kinetic analysis revealed that dCTP, dGTP, and GTP stimulate ribonucleotide reduction solely by increasing the affinity of the enzyme for substrate without affecting the Vmax of the respective reactions. ATP behaves in a different manner as it stimulates CDP reduction by altering both the affinity of the enzyme for substrate and the Vmax. Cellular concentrations of ribo- and deoxyribonucleoside di- and triphosphate pools were measured to help evaluate the relative physiological importance of the nucleotide activators. These determinations, along with the reaction kinetic studies, strongly imply that ATP is a much more important regulator of CDP reduction that dCTP, whereas GTP may serve as well or better than dGTP as the in vivo activator of ADP reduction.  相似文献   

3.
N Bennett  A Clerc 《Biochemistry》1989,28(18):7418-7424
The mechanism of activation of cGMP phosphodiesterase by the GTP-binding protein in the disc membrane of retinal rods has been investigated by measuring the light-induced phosphodiesterase activity in reconstituted systems where the concentration of either the GTP-binding protein or the phosphodiesterase is varied. The results are consistent with the existence of two activator sites per phosphodiesterase functional unit: binding of one G alpha GTP (alpha subunit of the G-protein with GTP bound) with high affinity (100 +/- 50 nM) partially activates the enzyme (Vmax1 approxmately 0.05 Vmax to 0.10V max to trypsin-activated phosphodiesterase); binding of a second G alpha GTP with lower affinity (600 +/- 100 nM) induces maximal activation (Vmax2 approximately Vmax of trypsin-activated phosphodiesterase). The two different states of activated phosphodiesterase have the same Km for cGMP and the same pH dependence; they differ in their sensitivity to GMP. Micromolar concentration of protamines increases the affinity of the two activator sites and slightly increases Vmax1. When G-protein is activated with GTP-gamma S instead of GTP, the affinities of the two activator sites are not significantly modified, while Vmax1 appears to be increased.  相似文献   

4.
K Sekimizu  D Bramhill  A Kornberg 《Cell》1987,50(2):259-265
ATP is bound to dnaA protein with high affinity (KD = 0.03 microM) and hydrolyzed slowly to ADP in the presence of DNA. ADP is also bound tightly to dnaA protein and exchanges with ATP very slowly. The ATP form is active in replication; the ADP form is not. A unique conformation of oriC, formed in an early initiation stage, depends on dnaA protein being in the ATP form. The subsequent entry of dnaB protein to form a prepriming complex also requires ATP binding and is blocked by bound ADP. Inasmuch as hydrolysis of ATP is far slower than these initiation reactions and since the poorly hydrolyzable analogue ATP gamma S can replace ATP, the ATP function appears to be allosteric. The extraordinary affinity of ATP for dnaA protein, its slow hydrolysis to ADP, the profound inhibition of dnaA functions by ADP, and the very slow exchange of ADP all point to a possible regulatory role for these nucleotides in the cell cycle.  相似文献   

5.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
DNA polymerase I (Pol I) is an enzyme of DNA replication and repair containing three active sites, each requiring divalent metal ions such as Mg2+ or Mn2+ for activity. As determined by EPR and by 1/T1 measurements of water protons, whole Pol I binds Mn2+ at one tight site (KD = 2.5 microM) and approximately 20 weak sites (KD = 600 microM). All bound metal ions retain one or more water ligands as reflected in enhanced paramagnetic effects of Mn2+ on 1/T1 of water protons. The cloned large fragment of Pol I, which lacks the 5',3'-exonuclease domain, retains the tight metal binding site with little or no change in its affinity for Mn2+, but has lost approximately 12 weak sites (n = 8, KD = 1000 microM). The presence of stoichiometric TMP creates a second tight Mn2+ binding site or tightens a weak site 100-fold. dGTP together with TMP creates a third tight Mn2+ binding site or tightens a weak site 166-fold. The D424A (the Asp424 to Ala) 3',5'-exonuclease deficient mutant of the large fragment retains a weakened tight site (KD = 68 microM) and has lost one weak site (n = 7, KD = 3500 microM) in comparison with the wild-type large fragment, and no effect of TMP on metal binding is detected. The D355A, E357A (the Asp355 to Ala, Glu357 to Ala double mutant of the large fragment of Pol I) 3',5'-exonuclease-deficient double mutant has lost the tight metal binding site and four weak metal binding sites. The binding of dGTP to the polymerase active site of the D355A,E357A double mutant creates one tight Mn2+ binding site with a dissociation constant (KD = 3.6 microM), comparable with that found on the wild-type enzyme, which retains one fast exchanging water ligand. Mg2+ competes at this site with a KD of 100 microM. It is concluded that the single tightly bound Mn2+ on Pol I and a weakly bound Mn2+ which is tightened 100-fold by TMP are at the 3',5'-exonuclease active site and are essential for 3',5'-exonuclease activity, but not for polymerase activity. Additional weak Mn2+ binding sites are detected on the 3',5'-exonuclease domain, which may be activating, and on the polymerase domain, which may be inhibitory. The essential divalent metal activator of the polymerase reaction requires the presence of the dNTP substrate for tight metal binding indicating that the bound substrate coordinates the metal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

8.
The dissociation constant for the complex of rhodanese and Cibacron Blue, determined by analytical affinity chromatography using rhodanese immobilized on controlled-pore glass (CPG) beads (200 nm pore diameter) and aminohexyl-Cibacron Blue, was 44 microM which agreed well with the kinetic inhibition constant, suggesting that the dye binds at or near the active site of this enzyme. Formation of a binary complex of the dye and lactate dehydrogenase (LDH) was also characterized by direct chromatography of LDH on CPG/immobilized Cibacron Blue (KD = 0.29 microM). The binary complex formed between LDH and NADH was characterized by analytical affinity chromatography using both CPG/immobilized LDH and immobilized Cibacron Blue. Since the dye competes with NADH in binding to the active site of LDH, competitive elution chromatography using the immobilized dye allows determination of the dissociation constant of the soluble LDH.NADH complex. Agreement between the dissociation constants determined by direct chromatography of NADH on immobilized LDH (KD = 1.4 microM) and that determined for the soluble complex (KD = 2.4 microM) indicates that immobilization of LDH did not affect the interaction. Formation of various binary, ternary and quaternary complexes of bovine liver glutamate dehydrogenase (GDH) with glutamate, NADPH, NADH, and ADP was also investigated using immobilized GDH. This approach allows characterization of the enzyme/ligand interactions without the complicating effect of enzyme self-association. The affinity for NADPH is considerably greater in the ternary complex (including glutamate) as compared to the binary complex (0.38 microM vs 22 microM); however, occupancy of the regulatory site by ADP greatly reduces the affinity in both complexes (6.4 microM and 43 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nm). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.  相似文献   

11.
The mechanism of interaction of the G-protein of retinal rods with rhodopsin and with nucleotides has been investigated using two independent techniques, light-scattering and direct binding measurements with labeled nucleotides. Binding of photoexcited rhodopsin (R*) and nucleotides are shown to be antagonist, and three conformations of the G-protein are described, each of which is proposed to be related to a different level of light-scattering, as follows: (a) the "dark" state, stable in the absence of photoexcited rhodopsin, in which the nucleotide site is poorly accessible and has a high affinity (dissociation constants, 0.1 microM for GDP and 0.01 microM for GppNHp); (b) the R*-bound state in which the nucleotide site is rapidly accessible with a lower affinity (dissociation constants, about 20 microM for GDP and GTP; 20-100 microM for GppNHp). Binding of R* to the G-protein therefore enables rapid binding or exchange of the nucleotide; this in turn reduces the affinity of the G-protein for R* (dissociation constants, 0.2 microM for G-protein with GDP bound and 2-10 microM for G-protein with GppNHp bound, compared to 1 nM in absence of bound nucleotide); and (c) the third state, the activator of the phosphodiesterase. In the presence of GTP, an additional irreversible and fast step, which is proposed to be the dissociation of alpha-GTP from beta gamma, is shown to occur; a steady state equilibrium is obtained, and the dissociation constant measured between GTP and this third state of the G-protein in the presence of R* is an apparent constant which depends on the rate of transconformation between the first two states and on the rate of GTP hydrolysis. The minimum value of this apparent dissociation constant for GTP (0.05-0.1 (microM) is obtained at high levels of illumination. Finally, some results (number of nucleotide sites and saturation of the rate of the light-scattering signal) suggest an oligomeric association of the G-protein.  相似文献   

12.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

13.
Actin of fragmin-actin complex is phosphorylated by an endogenous kinase from plasmodium of Physarum polycephalum. The phosphorylation abolishes the nucleation and capping activities of fragmin-actin complex. The kinase has been purified and termed actin kinase [Furuhashi, K. & Hatano, S. (1990) J. Cell Biol. 111, 1081-1087]. Enzymatic properties of the purified actin kinase were studied in detail. Actin kinase exhibited the highest activity under conditions physiological for the plasmodium (30 mM KCl, 6 mM MgCl2, pH 7.0). The Vmax and the Km of the enzyme for ATP were about 83 mumol/min/mg and 25 microM, respectively. The Km for fragmin-actin complex was 190 nM. The purified actin kinase phosphorylated actin of fragmin-actin complex at a constant rate regardless of Ca2+ concentration. Similarly, 2 microM cAMP, 2 microM cGMP, 2 micrograms/ml calmodulin in the presence of Ca2+ or 1 mM GTP showed no effect on the activity of the purified enzyme. Actin kinase did not phosphorylate histone H1, H2B, alpha-casein, or beta-casein, suggesting that actin kinase is a new kind of protein kinase which specifically phosphorylates actin of the fragmin-actin complex.  相似文献   

14.
Ryanodine is a specific ligand for the calcium release channel which mediates calcium release in excitation-contraction coupling in muscle. In this study, ryanodine binding in sarcoplasmic reticulum from heart muscle and skeletal muscle is further compared and correlated with function. The new findings include the following: (1) Two types of binding, high affinity (KD1 approximately 5-10 nM) and low affinity (KD2 approximately 3 microM), can now be discerned for the skeletal muscle receptor. KD1 is approximately the same as and KD2 of similar magnitude to that previously reported for heart. (2) The dissociation rates for the high-affinity binding have been directly measured for both heart and skeletal muscle (t1/2 approximately 30-40 min). These rates are more rapid than previously reported (t1/2 approximately 14 h). (3) KD1's obtained from the ratio of the dissociation and association rate constants agree with the dissociation constant measured by equilibrium binding Scatchard analysis. (4) Ryanodine binding to the low-affinity site can be correlated with a decrease in the dissociation rate constant (k-1) of the high-affinity site, and thereby in the apparent dissociation constant (KD1). The inhibition constant (KI) for inhibiting the high-affinity off rate obtained from a double-reciprocal plot of the change in off rate vs [ryanodine] is practically the same in heart (0.66 microM) and skeletal muscle (0.64 microM) and in the range of the KD2. The binding of cold ryanodine to the low-affinity site appears to lock the bound [3H]ryanodine onto the high-affinity site rather than to exchange with it. Thus, in this sense, the ryanodine receptor exhibits "positive cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The PMI and GMP activities co-eluted in the same protein peak through successive fractionation on hydrophobic interaction, ion exchange, and gel filtration chromatography. The purified enzyme migrated as a 56,000 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native protein migrated as a monomer of 54,000 molecular weight upon gel filtration chromatography. The apparent Km for D-mannose 6-phosphate was 3.03 mM, and the Vmax was 830 nmol/min/mg of enzyme. For the GMP forward reaction, apparent Km values of 20.5 microM and 29.5 microM for D-mannose 1-phosphate and GTP, respectively, were obtained from double reciprocal plots. The GMP forward reaction Vmax (5,680 nmol/min/mg of enzyme) was comparable to the reverse reaction Vmax (5,170 nmol/min/mg of enzyme), and the apparent Km for GDP-D-mannose was determined to be 14.2 microM. Both reactions required Mg2+ activation, but the PMI reaction rate was 4-fold higher with Co2+ as the activator. PMI (but not GMP) activity was sensitive to dithiothreitol, indicating the involvement of disulfide bonds to form a protein structure capable of PMI activity. DNA sequencing of a cloned mutant algA gene from P. aeruginosa revealed that a point mutation at nucleotide 961 greatly decreased the levels of both PMI and GMP in a crude extract.  相似文献   

17.
The fluorescent nucleotide 2',3'-trinitrophenyl-ATP (TNP-ATP) binds at the triphosphate substrate binding site of the large (Klenow) fragment of DNA polymerase I (Pol I) as detected by direct binding studies measuring the increase in fluorescence of this ligand (n = 1.0, KD = 0.07 microM). The enzyme-TNP-ATP complex binds Mg2+ and Mn2+ tightly (KD = 0.05 microM) as measured by an increase in fluorescence on titrating with these metals. The substrate dGTP competitively displaces TNP-ATP from the enzyme (KD = 5.7 microM) de-enhancing the fluorescence. The polymerase reaction is half-maximally inhibited by 0.8 microM TNP-ATP in the presence of dATP (10 microM) as substrate. A region of the amino acid sequence of Pol I (peptide I) consisting of residues 728-777 has been synthesized and found to contain significant secondary structure by CD both in water and 50% methanol/water. In water at 3 degrees C, peptide I binds the substrate analog TNP-ATP (KD = 0.03 microM) with a stoichiometry of 0.2. In 50% methanol at 3 degrees C, peptide I binds TNP-ATP with a higher stoichiometry than in water, consistent with a 1:1 complex, but biphasically (16% of the peptide, KD = 0.09 microM; 84% of the peptide, KD = 5.0 microM), and competitively binds the Pol I substrates dATP, TTP, and dGTP (KD = 230-570 microM). Evidence from size exclusion high performance liquid chromatography suggests that these two forms of the peptide are monomer and dimer, respectively. Significantly, the peptide I-TNP-ATP complex binds duplex DNA, tightly (KD = 0.1-0.5 microM) and stoichiometrically, and single stranded DNA more weakly. The peptide I-duplex DNA complex binds both TNP-ATP (KD = 0.5-1.5 microM) and Pol I substrates (KD = 350-2100 microM) stoichiometrically. In a control experiment, a second peptide, peptide II, based on residues 840-888 of the Pol I sequence, retains secondary structure, as detected by CD, but displays no binding of TNP-ATP. The ability of peptide I, which represents only 8% of the large fragment of Pol I, to bind both substrates and duplex DNA indicates that residues 728-777 constitute a major portion of the substrate binding site of this enzyme.  相似文献   

18.
The H-ras gene product p21H has been mutated at Phe-28, which makes a hydrophobic interaction with the guanine base of bound GDP/GTP. The mutation Phe-28----Leu drastically increases nucleotide dissociation rates without affecting association rates. This is due to a perturbed binding of base, alpha- and beta-phosphate, and Mg2+, as evidenced from 31P NMR and fluorescence measurements. The region around the gamma-phosphate appears normal. The affinity of Mg2+ for both the di- and the triphosphate conformation of the mutant was also measured by fluorescence. The association constant is 3.5 x 10(7) M-1 for the Gpp(NH)p complex, 500 times higher than for the GDP form. The mutation does not change appreciably the intrinsic or the GTPase activating protein (GAP)-stimulated GTPase. The mutated protein induces neurite differentiation however when pressure-loaded into PC12 cells, which is equivalent to transformation of NIH 3T3 cells. This shows that p21 (F28L) is converted to the GDP bound form by GAP but is transforming because the high dissociation rate for nucleotides leads to a protein predominantly in the active GTP bound form.  相似文献   

19.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.  相似文献   

20.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号