首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using synthetic peptides, we characterized the B-lymphocyte (antibody) and T-lymphocyte (proliferation) responses to an immunodominant epitope of human immunodeficiency virus type 1 (HIV-1) located near the amino-terminal end of the transmembrane glycoprotein (env amino acids 598 to 609). Both immunoglobulin M (IgM) and IgG antibodies against this epitope appeared early after primary infection with HIV-1. In an animal model, the IgG response to a synthetic peptide derived from this sequence was T-helper-cell dependent, whereas the IgM response was T-cell independent. In addition, antibody generated by immunization with this peptide had HIV-1-neutralizing activity. Greater than 99% (201 of 203) of patients infected with HIV-1 generated antibody to this peptide in vivo; however, only 24% (7 of 29) had T cells that proliferated in response to this peptide in vitro. These observations suggest that different HIV-1 gp41 epitopes elicit B-cell and T-cell immune responses.  相似文献   

2.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

3.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

4.
Antibodies to several epitopes of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41) can synergize in inhibiting HIV-1 infection. In the present study we tested the ability of a monoclonal antibody (MAb), 5A8, which interacts with CD4 domain 2, and other CD4-specific MAbs to synergize with antibodies against gp120. We have previously found that 5A8 inhibits HIV-1 entry without interfering with gp120 binding to CD4, presumably by affecting a postbinding membrane fusion event. Because antibodies to the gp120 V3 loop also affect post-CD4-gp120-binding events, 5A8 was first tested in combination with anti-V3 loop antibodies for possible synergy. The anti-V3 loop antibodies 0.5 beta, NEA-9205, and 110.5 acted synergistically with 5A8 in inhibiting syncytium formation between gp120-gp41- and CD4-expressing cells. A human MAb to an epitope of gp120 involved in CD4 binding, IAM 120-1B1, and another anti-CD4 binding site antibody, PC39.13, also exerted synergistic effects in combination with 5A8. Similarly, an antibody against the gp120 binding site on CD4, 6H10, acted synergistically with an anti-V3 loop antibody, NEA-9205. However, a control anti-CD4 antibody, OKT4, which does not significantly inhibit syncytium formation alone, produced only an additive effect when combined with NEA-9205. Serum from HIV-1-infected individuals, which presumably contains antibodies to the V3 loop and the CD4 binding site, exhibited a strong synergistic effect with 5A8 in inhibiting infection by a patient HIV-1 isolate (0104B) and in blocking syncytium formation. These results indicate that therapeutics based on antibodies affecting both non-gp120 binding and gp120 binding epitopes of the target receptor molecule, CD4, could be efficient in patients who already contain anti-gp120 antibodies and could also be used to enhance passive immunization against HIV-1 in combination with anti-gp120 antibodies.  相似文献   

5.
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.  相似文献   

6.
The high-yield expression of a neutralizing epitope from human immunodeficiency virus type 1 (HIV-1) on the surface of a plant virus and its immunogenicity are presented. The highly conserved ELDKWA epitope from glycoprotein (gp) 41 was expressed as an N-terminal translational fusion with the potato virus X (PVX) coat protein. The resulting chimeric virus particles (CVPs), purified and used to immunize mice intraperitoneally or intranasally, were able to elicit high levels of HIV-1-specific immunoglobulin G (IgG) and IgA antibodies. Furthermore, the human immune response to CVPs was studied with severe combined immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL-SCID). hu-PBL-SCID mice immunized with CVP-pulsed autologous dendritic cells were able to mount a specific human primary antibody response against the gp41-derived epitope. Notably, sera from both normal and hu-PBL-SCID mice showed an anti-HIV-1-neutralizing activity. Thus, PVX-based CVPs carrying neutralizing epitopes can offer novel perspectives for the development of effective vaccines against HIV and, more generally, for the design of new vaccination strategies in humans.  相似文献   

7.
Among nonneutralizing HIV-1 envelope antibodies (Abs), those capable of mediating antibody-dependent cellular cytotoxicity (ADCC) activity have been postulated to be important for control of HIV-1 infection. ADCC-mediating Ab must recognize HIV-1 antigens expressed on the membrane of infected cells and bind the Fcγ receptor (FcR) of the effector cell population. However, the precise targets of serum ADCC antibody are poorly characterized. The human monoclonal antibody (MAb) A32 is a nonneutralizing antibody isolated from an HIV-1 chronically infected person. We investigated the ability of MAb A32 to recognize HIV-1 envelope expressed on the surface of CD4(+) T cells infected with primary and laboratory-adapted strains of HIV-1, as well as its ability to mediate ADCC activity. The MAb A32 epitope was expressed on the surface of HIV-1-infected CD4(+) T cells earlier than the CD4-inducible (CD4i) epitope bound by MAb 17b and the gp120 carbohydrate epitope bound by MAb 2G12. Importantly, MAb A32 was a potent mediator of ADCC activity. Finally, an A32 Fab fragment blocked the majority of ADCC-mediating Ab activity in plasma of subjects chronically infected with HIV-1. These data demonstrate that the epitope defined by MAb A32 is a major target on gp120 for plasma ADCC activity.  相似文献   

8.
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.  相似文献   

9.
The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1(YU2) gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine.  相似文献   

10.
A human monoclonal antibody designated 15e is reactive with the envelope glycoprotein (gp120) of multiple isolates of human immunodeficiency virus type 1 (HIV-1). Antibody 15e also neutralizes HIV-1 with broad specificity and blocks gp120 binding to CD4. Characterization of the 15e epitope shows that it is conformation dependent and is distinct from previously recognized functional domains of gp120, suggesting that this epitope represents a novel site important for HIV-1 neutralization and CD4 binding. These findings have implications for the development of a vaccine for AIDS.  相似文献   

11.
Early diagnosis and prevention of human immunodeficiency virus type-1 (HIV-1) infection, which remains a serious public health threat, is inhibited by the lack of reagents that elicit antiviral responses in the immune system. To create mimotopes (peptide models of epitopes) of the most immunodominant epitope, CSGKLIC, that occurs as a loop on the envelope gp41 glycoprotein and is a key participant in infection, we used phage-display technology involving biopanning of large random libraries with IgG of HIV-1-infected patients. Under the conditions used, library screening with IgG from patient serum was directed to the CSGKLIC epitope. Three rounds of selection converted a 12 mer library of 10(9) sequences into a population in which up to 79% of phage bore a family of CxxKxxC sequences ("x" designates a non-epitope amino acid). Twenty-one phage clones displaying the most frequently selected peptides were obtained and were shown to display the principal structural (sequence and conformational), antigenic and immunogenic features of the HIV-1 immunodominant loop-epitope. Notably, when the mixture of the phage mimotopes was injected into mice, it induced 2- to 3-fold higher titers of antibody to the HIV-1 epitope than could be induced from individual mimotopes. The described approach could be applicable for accurately reproducing HIV-1 epitope structural and immunological patterns by generation of specialized viral epitope libraries for use in diagnosis and therapy.  相似文献   

12.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

13.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

14.
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.  相似文献   

15.
We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.  相似文献   

16.
Six recombinant human Fab fragments that were derived from the same human immunodeficiency virus type 1 (HIV-1)-infected individual and are directed against the CD4 binding site (CD4bs) of the gp120 envelope glycoprotein were studied. A range of neutralizing activity against the HIV-1 (HXBc2) isolate was observed, with Fab b12 exhibiting the greatest potency among the Fabs tested. The neutralizing potency of Fab b12 was better than that of monoclonal whole antibodies directed against the third variable (V3) region of gp120. To explore the basis for the efficient neutralizing activity of b12, the recognition of a panel of HIV-1 gp120 mutants by the six Fabs was studied. The patterns of sensitivity to particular gp120 amino acid changes were similar for all six Fabs to those seen for anti-CD4bs monoclonal antibodies derived from HIV-1-infected individuals by conventional means. In addition, recognition by Fab b12 demonstrated an atypical sensitivity to changes in the V1 and V2 variable regions. Next, the binding of the Fabs to monomeric gp120 and to the envelope glycoprotein complex was examined. Neither the binding properties of the b12 Fab to monomeric gp120 nor the ability of the Fab to compete with soluble CD4 for monomeric gp120 binding appeared to account for the greater neutralizing potency. However, both quantitative and qualitative differences between the binding of b12 and that of less potent Fabs to the cell surface envelope glycoprotein complex were observed. Relative to less potently neutralizing Fabs, Fab b12 exhibited a higher affinity for a subpopulation of cell surface envelope glycoproteins, the conformation of which was best approximated by the mature gp120 glycoprotein. Apparently, subtle differences in the gp120 epitope recognized allow some members of the group of anti-CD4bs antibodies to bind to the functionally relevant envelope glycoprotein complex and to neutralize virus more efficiently.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 4E10 binds to a linear, highly conserved epitope within the membrane-proximal external region of the HIV-1 envelope glycoprotein gp41. We have delineated the peptide epitope of the broadly neutralizing 4E10 antibody to gp41 residues 671 to 683, using peptides with different lengths encompassing the previously suggested core epitope (NWFDIT). Peptide binding to the 4E10 antibody was assessed by competition enzyme-linked immunosorbent assay, and the K(d) values of selected peptides were determined using surface plasmon resonance. An Ala scan of the epitope indicated that several residues, W672, F673, and T676, are essential (>1,000-fold decrease in binding upon replacement with alanine) for 4E10 recognition. In addition, five other residues, N671, D674, I675, W680, and L679, make significant contributions to 4E10 binding. In general, the Ala scan results agree well with the recently reported crystal structure of 4E10 in complex with a 13-mer peptide and with our circular dichroism analyses. Neutralization competition assays confirmed that the peptide NWFDITNWLWYIKKKK-NH(2) could effectively inhibit 4E10 neutralization. Finally, to limit the conformational flexibility of the peptides, helix-promoting 2-aminoisobutyric acid residues and helix-inducing tethers were incorporated. Several peptides have significantly improved affinity (>1,000-fold) over the starting peptide and, when used as immunogens, may be more likely to elicit 4E10-like neutralizing antibodies. Hence, this study represents the first stage toward iterative development of a vaccine based on the 4E10 epitope.  相似文献   

18.
A cDNA clone corresponding to the gp41 gene fragment nucl. 7573-7730 of the human immunodeficiency virus type 1 (HIV-1) was selected from a random HIV-1 genomic library expressed in yeast. This clone encodes a 52-residue long peptide (amino acid (a.a.)) 591-642) bearing the major immunodominant domain (a.a. 598-609) of the HIV-1 transmembrane glycoprotein gp41. Expression of the recombinant peptide pSE-env591-642 was driven by the alpha-mating factor leader sequence contained in a plasmid pSE-x allowing the synthesis and secretion of foreign gene product in Saccharomyces cerevisiae. Time-course analysis of the secretion into culture medium revealed an optimal production of the glycoprotein fragment at 28-30 h with no observable cytotoxicity. The secreted peptide is highly glycosylated with NH2-terminal heterogeneity probably due to different post-translational modifications. The secreted peptide shows an extreme antigenicity since in ELISA assays, as few as 5 microliters/well of crude supernatant are sufficient to obtain a strong detection by monoclonal antibodies or by 100% of sera from HIV-infected individuals. The purified glycopeptide pSE-env591-642 binds to a monoclonal antibody directed against the immunodominant epitope (a.a. 603-609) with an affinity similar to that of the complete glycoprotein gp160 (Kd values within the 10(-10) M range) and with a 100-fold higher affinity than that of a linear peptide fragment SP-env584-609. These results indicate that overexpression in yeast can efficiently provide an abundant source of highly antigenic gp41 protein fragment pSE-env591-642 which retains the antigenic properties of the native gp160 protein. Such a recombinant peptide should therefore be considered as a good candidate for antigen in HIV detection tests.  相似文献   

19.
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.  相似文献   

20.
Antibodies m66.6 and 2F5 are the only effective human HIV-1-neutralizing antibodies reported thus far to recognize the N-terminal region of the membrane-proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein. Although 2F5 has been extensively characterized, much less is known about antibody m66.6 or antibody m66, a closely related light-chain variant. Here, we report the crystal structure of m66 in complex with its gp41 epitope, along with unbound structures of m66 and m66.6. We used mutational and binding analyses to decipher antibody elements critical for their recognition of gp41 and determined the molecular basis that underlies their neutralization of HIV-1. When bound by m66, the N-terminal region of the gp41 MPER adopts a conformation comprising a helix, followed by an extended loop. Comparison of gp41-bound m66 to unbound m66.6 identified three light-chain residues of m66.6 that were confirmed through mutagenesis to underlie the greater breadth of m66.6-mediated virus neutralization. Recognition of gp41 by m66 also revealed similarities to antibody 2F5 both in the conformation of crucial epitope residues as well as in the angle of antibody approach. Aromatic residues at the tip of the m66.6 heavy-chain third complementarity-determining region, as in the case of 2F5, were determined to be critical for virus neutralization in a manner that correlated with antibody recognition of the MPER in a lipid context. Antibodies m66, m66.6, and 2F5 thus utilize similar mechanistic elements to recognize a common gp41-MPER epitope and to neutralize HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号