共查询到20条相似文献,搜索用时 3 毫秒
2.
Nitric oxide (NO) is involved, together with plant hormones, in the adaptation to Al stress in plants. However, the mechanism by which NO and plant hormones interplay to improve Al tolerance are still unclear. We have recently shown that patterns of plant hormones alteration differ between rye and wheat under Al stress. NO may enhance Al tolerance by regulating hormonal equilibrium in plants, as a regulator of plant hormones signaling. In this paper, some unsolved issues are discussed based on recent studies and the complex network of NO and plant hormones in inducing Al tolerance of plants are proposed. 相似文献
3.
The effect of water deficit on nitric oxide (NO) generation was investigated in cucumber ( Cucumis sativus cv. Dar) seedling roots using bio-imaging with an NO-selective fluorophor, diaminofluorescein-2-diacetate (DAF-2DA). Roots subjected to mild (5 and 10 h) water deficit showed slightly enhanced NO synthesis in cells of root tips and in the surrounding elongation zone. However, severe (17 h) stress resulted in an intensive NO production localized mainly in and above the elongation zone. Water stress-induced NO generation was blocked by a specific NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) as well as nitrate reductase (NR) and partially by nitric oxide synthase (NOS-like) inhibitors.A pharmacological approach was used in order to verify the capacity of NO to induce adaptive responses of cucumber roots to water deficit. A positive correlation was found between NO donor (SNP 100 μM and GSNO 100 μM) pretreatment and plant hydration status, measured as relative water content (RWC) during progressive dehydration. At an early stage (5 h) of stress duration NO caused a periodical increase in lipoxygenase (LOX) activity, correlated with time-dependent enhancement of lipid peroxidation. Beginning from 10 h up to severe stress (17 h) exogenous NO was able to diminish LOX activity and alleviate water deficit-induced membrane permeability and lipid peroxidation, measured as TBARS content and visualised by histochemical staining in situ. Observed changes via NO were accompanied by a significant reduction of proline level, suggesting that the accumulation of this osmolyte might not be essential in water stress tolerance. Obtained results clearly indicate that NO augmentation is likely to help the plant at the initial stage of tissue dehydration to trigger efficient mechanisms, mitigating severe water deficit effects in roots of cucumber seedlings. 相似文献
4.
Nitric oxide (NO) is a key signal molecule involved in many physiological processes in plants. To study the mechanisms of
exogenous NO contribution to alleviate the aluminum (Al) toxicity, roots of rice ( Oryza sativa) seedlings pre-treated with sodium nitroprusside (SNP, a NO donor) were used to investigate the effect of Al in this study.
Results indicated that NO alleviated the lipid peroxidation induced by Al and promoted the root elongation, whereas butylated
hydroxyanisole (BHA), an efficient lipophilic antioxidant, alleviated the lipid peroxidation only. Rice seedling roots pre-treated
with SNP followed by Al treatment had lower contents of pectin and hemicellulose, lower Al accumulation in root tips and cell
walls, higher degree of methylation of pectin and lower wall Al-binding capacity than the roots with Al treatment only. Therefore,
the decreased Al accumulation in the cell walls of rice roots is likely to be the reason for the NO-induced increase of Al
tolerance in rice, and it seems that exogenous NO enhanced Al tolerance in rice roots by decreasing the contents of pectin
and hemicellulose, increasing the degree of methylation of pectin, and decreasing Al accumulation in root cell walls. 相似文献
5.
The common bean root system is composed of several types of root (e.g. tap, basal, and lateral roots), whose physiological functions may be of great difference. However, we do not know if the root system of common bean differs in organic acid secretion and thus aluminium (Al) resistance. In the present study, the tap and basal roots of three common bean genotypes (i.e. G19842, SQ12 and BAT881) from different origins were compared for their citrate secretion and Al resistance. Grown in a simple solution containing 30 µ M Al 3+ for 24 h, genotype G19842 maintained 75% relative tap root length [RTRL = (tap root length with Al)/(tap root length without Al)], 48% relative basal root length [RBRL = (basal root length with Al)/ (basal root length without Al)], genotype SQ12 maintained 62% RTRL and 57% RBRL, while BAT881 only maintained 31% RTRL and 19% RBRL, indicating differential sensitivity of bean genotypes and root types to Al stress. The amounts of Al‐induced citrate secretion by the tap/basal roots were 9.8/5.1, 8.2/5.9 and 5.4/4.1 nmol cm ?2 FR (fresh root) [12 h] ?1 for G19842, SQ12 and BAT881, respectively, indicating that both bean genotypes and root types differ in organic acid secretion. In G19842, the root surface area was 25% higher in tap root apex than that in basal root apex, and the amounts of citrate secretion per unit surface area and per root apex were 29 and 62% higher in tap root apex than those in basal root apex, respectively, suggesting that the higher citrate secretion in the tap root apex could be attributed to the larger surface area and the higher secretion activity. Stronger inhibition of Al‐induced citrate secretion in the basal than tap roots by anthracene‐9‐carboxylic acid, an inhibitor of anion channel and K‐252a, a broad range inhibitor of protein kinase may also imply the differences in the activities of anion channels and K‐252a‐sensitive protein kinases on the plasma membrane between the tap and basal roots, resulting in differential citrate secretion. We propose that the higher Al resistance in the tap root than in basal roots might be attributed to both greater number and higher activity of the anion channels in the former, thus allowing more citrate secretion in this root type. 相似文献
6.
Nitric oxide (NO) is a signaling molecule controlling several steps of plant development and defense process under stress conditions. NO-induced alleviation of manganese (Mn) toxicity was investigated on bean plants submitted for 28 days to 500 µM MnCl2. Manganese excess decreased plant dry weight and elongation and increased levels of reactive oxygen species and lipid peroxidation leading to up-regulation of superoxide dismutase, catalase, and ascorbate peroxidase activities. The inhibitory effects of Mn on plant growth were associated to reduction of light-saturated carbon assimilation (Amax), stomatal conductance (gs), and transpiration (E). By contrast, Mn induced significant increase in the apparent quantum yield (ɸ) and light compensation point (LCP). Interestingly, intracellular CO2 (Ci) remains stable under Mn stress. Concomitantly, leaf membrane lipids have drastically reduced under high Mn concentration. After Mn exposition, leaf fatty acids exhibited a significant loss of linolenic acid, accompanied by an accumulation of palmitoleic, stearic, and linoleic acids leading to alteration of lipid desaturation. NO supply reversed Mn toxicity as evidenced by enhancement of growth biomass and recovery of Amax, E, ɸ, and LCP. Similarly, NO addition has positive effects on leaf lipid content and composition leading to restoration of lipid unsaturation. The modulation of fatty acid composition can be a way to reduce leaf membrane damages and maintain optimal photosynthesis and plant growth. Despite the absence of enough evidences in how NO is involved in lipid and photosynthesis recovery under Mn stress conditions, it is assumed that NO beneficial effects are attributable to NO/Mn cross-talk. 相似文献
7.
In the present study, experiments were performed to investigate the role of nitric oxide (NO) in magnetopriming-induced seed germination and early growth characteristics of soybean ( Glycine max) seedlings under salt stress. The NO donor (sodium nitroprusside, SNP), NO scavenger (2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, CPTIO), inhibitors of nitrate reductase (sodium tungstate, ST) or NO synthase (N-nitro-L-Arg-methyl ester, LNAME) and NADPH oxidase inhibitor (diphenylene iodonium, DPI) have been used to measure the role of NO in the alleviation of salinity stress by static magnetic field (SMF of 200 mT, 1 h). Salt stress (50 mM NaCl) significantly reduced germination and early growth of seedlings emerged from non-primed seeds. Pre-treatment of seeds with SMF positively stimulated the germination and consequently promoted the seedling growth. ST, LNAME, CPTIO and DPI significantly decreased the growth of seedling, activities of α-amylase, protease and nitrate reductase (NR), hydrogen peroxide (H 2O 2), superoxide (O 2•−) and NO content in roots of seedlings emerged from non-primed and SMF-primed seeds. However, the extent of reduction was higher with ST in seedlings of SMF-primed seeds under both conditions, whereas SNP promoted all the studied parameters. Moreover, the generation of NO was also confirmed microscopically using a membrane permanent fluorochrome (4-5-diaminofluorescein diacetate [DAF-2 DA]). Further, analysis showed that SMF enhanced the NR activity and triggered the NO production and NR was maximally decreased by ST as compared to LNAME, CPTIO and DPI. Thus, in addition to ROS, NO might be one of the important signaling molecules in magnetopriming-induced salt tolerance in soybean and NR may be responsible for SMF-triggered NO generation in roots of soybean. 相似文献
8.
The recent proposal of Tipton and Thowsen (Plant Physiol 79: 432-435) that iron-deficient plants reduce ferric chelates in cell walls by a system dependent on the leakage of malate from root cells was tested. Results are presented showing that this mechanism could not be responsible for the high rates of ferric reduction shown by roots of iron-deficient bean ( Phaseolus vulgaris L. var Prélude) plants. The role of O 2 in the reduction of ferric chelates by roots of iron-deficient bean plants was also tested. The rate of Fe(III) reduction was the same in the presence and in the absence of O 2. However, in the presence of O 2 the reaction was partially inhibited by superoxide dismutase (SOD), which indicates a role for the superoxide radical, O 2[unk], as a facultative intermediate electron carrier. The inhibition by SOD increased with substrate pH and with decrease in concentration of the ferrous scavenger bathophenanthroline-disulfonate. The results are consistent with a mechanism for transmembrane electron transport in which a flavin or quinone is the final electron carrier in the plasma membrane. The results are discussed in relation to the ecological importance that O 2[unk] may have in the acquisition of ferric iron by dicotyledonous plants. 相似文献
9.
The pivotal role of glucose-6-phosphate dehydrogenase (G-6-PDH)-mediated nitric oxide (NO) production in the tolerance to oxidative stress induced by 100 mM NaCl in red kidney bean (Phaseolus vulgaris) roots was investigated. The results show that the G-6-PDH activity was enhanced rapidly in the presence of NaCl and reached a maximum at 100 mM. Western blot analysis indicated that the increase of G-6-PDH activity in the red kidney bean roots under 100 mM NaCl was mainly due to the increased content of the G-6-PDH protein. NO production and nitrate reductase (NR) activity were also induced by 100 mM NaCl. The NO production was reduced by NaN(3) (an NR inhibitor), but not affected by N(omega)-nitro-L-arginine (L-NNA) (an NOS inhibitor). Application of 2.5 mM Na(3)PO(4), an inhibitor of G-6-PDH, blocked the increase of G-6-PDH and NR activity, as well as NO production in red kidney bean roots under 100 mM NaCl. The activities of antioxidant enzymes in red kidney bean roots increased in the presence of 100 mM NaCl or sodium nitroprusside (SNP), an NO donor. The increased activities of all antioxidant enzymes tested at 100 mM NaCl were completely inhibited by 2.5 mM Na(3)PO(4). Based on these results, we conclude that G-6-PDH plays a pivotal role in NR-dependent NO production, and in establishing tolerance of red kidney bean roots to salt stress. 相似文献
10.
We demonstrated that magnesium (Mg) can alleviate aluminum (Al) toxicity in rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi] more effectively than is expected from a non-specific cation response. Micromolar concentrations of Mg alleviated the inhibition of root growth by Al but not by lanthanum, and neither strontium nor barium at the micromolar level alleviates Al toxicity. Aluminum also induced citrate efflux from rice bean roots, and this response was stimulated by inclusion of 10 microM Mg in the treatment solution. The increase in the Al-induced citrate efflux by Mg paralleled the improvement in root growth, suggesting that the ameliorative effect of Mg might be related to greater citrate efflux. Vanadate (an effective H+-ATPase inhibitor) decreased the Al-induced citrate efflux, while addition of Mg partly restored the efflux. Mg addition also increased the activity of Al-reduced plasma membrane H+-ATPase, as well as helping to maintain the Mg and calcium contents in root apices. We propose that the addition of Mg to the toxic Al treatment helps maintain the tissue Mg content and the activity of the plasma membrane H+-ATPase. These changes enhanced the Al-dependent efflux of citrate which provided extra protection from Al stress. 相似文献
11.
Excess aluminum (Al) ions and phosphorus (P) deficiency are the key factors that limit plant growth in acid soils. Secretion of organic acids (OA) from roots has been proposed as an Al-resistance mechanism. Nonetheless, the correlation between Al resistance and this mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive genotypes. To elucidate the mechanisms responsible for plant adaptability to acid soils, we studied the secretion of OA from roots of Stylosanthes in response to high-Al and low-P stresses using six different genotypes. Relative root inhibition by 50? µM Al ranged from 25–71% and differed significantly among six Stylosanthes genotypes. Al treatment induced the secretion of citrate from the roots of Stylosanthes seedling in a dose- and time-dependent manner. Moreover, the secretion rate was significantly higher in the Al-resistant genotype. On the other hand, inhibition of Al-induced citrate secretion by phenylisothiocyanate or 9-anthracenecarboxylic acid resulted in an increase in Al content in Stylosanthes root apices. P deficiency also induced citrate secretion from Stylosanthes seedling roots. Furthermore, citrate secretion was much more robust with exposure to both excess-Al and P-deficiency stresses than under either stress alone. Unlike Al-induced citrate secretion, which was rapid, low-P-induced secretion was a slow process, with significant increases in secretion only becoming evident after 6 d of treatment with free phosphate. The lag between treatment with Al and citrate secretion was approximately 4 h. These results suggest that the secretion of citrate is a mechanism for resistance to both excess-Al and low-P stresses in Stylosanthes. 相似文献
12.
Leptin is a polypeptide, mainly produced in white adipose tissue, and increases sympathetic nerve activity. A few studies investigated leptin's effect on peripheral vessels. We examined the vasorelaxant effects of human leptin on rat arteries. Arterial rings were precontracted with 1 x 10(-6) mol/l of phenylephrine, and leptin was superfused. Leptin relaxed phenylephrine-precontracted arterial rings in a dose-dependent manner. ED50 was calculated to 8.4 microg/ml. Removal of endothelium abolished the effects of leptin. Indomethacin (1 x 10(-5) mol/l) did not affect the vasorelaxation by leptin, whereas 1 x 10(-4) mol/l of N(omega)-nitro-L-arginine methyl ester (L-NAME) completely suppressed it. The inhibition was antagonized by 1 x 10(-4) mol/l of L-arginine. Leptin normally relaxed arterial rings during superfusion of K channel blockers, including 3 x 10(-5) mol/l of glibenclamide, 1 x 10(-6) of mol/l apamin, and 5 x 10(-7) mol/l of charybdotoxin. Low Cl(-) solution (8. 3 mmol/l) inhibited leptin-induced relaxation, but endothelium-independent vasodilatation by nitroprusside was not impaired at low Cl(-) solution. These results suggest that arterial relaxation by leptin is mediated by nitric oxide released from endothelium, and Cl(-) plays an important role in leptin-induced nitric oxide release. 相似文献
14.
Plant and Soil - Aluminum (Al) toxicity and magnesium (Mg) deficiency often coexist in acidic soils. Nitric oxide (NO) is involved in diverse physiological processes and stress responses. Here, we... 相似文献
15.
Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and
reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and
conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate
content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only
the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more
aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to
help achieve aluminum tolerance.
Pierluigi Barone and Daniele Rosellini contributed equally to this work. 相似文献
16.
It is widely accepted that nitrate but not ammonium improves tolerance of plants to hypoxic stress, although the mechanisms related to this beneficial effect are not well understood. Recently, nitrite derived from nitrate reduction has emerged as the major substrate for the synthesis of nitric oxide (NO), an important signaling molecule in plants. Here, we analyzed the effect of different nitrogen sources (nitrate, nitrite and ammonium) on the metabolic response and NO production of soybean roots under hypoxia. Organic acid analysis showed that root segments isolated from nitrate-cultivated plants presented a lower accumulation of lactate and succinate in response to oxygen deficiency in relation to those from ammonium-cultivated plants. The more pronounced lactate accumulation by root segments of ammonium-grown plants was followed by a higher ethanol release in the medium, evidencing a more intense fermentation under oxygen deficiency than those from nitrate-grown plants. As expected, root segments from nitrate-cultivated plants produced higher amounts of nitrite and NO during hypoxia compared to ammonium cultivation. Exogenous nitrite supplied during hypoxia reduced both ethanol and lactate production and stimulated cyanide-sensitive NO emission by root segments from ammonium-cultivated plants, independent of nitrate. On the other hand, treatments with a NO donor or a NO scavenger did not affect the intensity of fermentation of soybean roots. Overall, these results indicate that nitrite participates in the nitrate-mediated modulation of the fermentative metabolism of soybean roots during oxygen deficiency. The involvement of mitochondrial reduction of nitrite to NO in this mechanism is discussed. 相似文献
17.
Purple acid phosphatases (PAPs) are dinuclear metallohydrolases of widespread occurrence. In a first step to understand structure-function relationship of PAP from red kidney bean (kbPAP), we cloned its cDNA and functionally expressed the enzyme in insect cells. kbPAP cDNA encodes a protein of 459 amino acids with 99% identity to the published primary structure (T. Klabunde et al., Eur. J. Biochem. 226 (1994) 369-375). N-terminally the cDNA encodes 27 amino acids with characteristics for a signal directing the nascent protein to the endoplasmic reticulum. A baculovirus vector was constructed containing cDNAs of kbPAP and green fluorescent protein, the latter to serve as transfection and infection marker. Heterologous expression in High Five insect cells afforded a dimeric, disulfide-linked phosphatase of 110 kDa, identical to the mass of native kbPAP. Purification in three steps yielded 1.5 mg recombinant protein per liter of culture medium with a specific activity of 266 units/mg, slightly exceeding that of native kbPAP. The recombinant protein was functionally indistinguishable from native kbPAP, despite differences in glycosylation and sensitivity to redox reagents. 相似文献
19.
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. 相似文献
20.
The role of nitric oxide (NO), K(+) channels, and arachidonic acid metabolism, via cytochrome P450 and cyclooxygenase pathways, in the renal vasodilatory effect of bradykinin was examined in the isolated rat kidney perfused ex situ with a blood-free solution. Bradykinin (BK, 0.25-1.0 microM) induced a dose-dependent reduction of 10-35% in the relative renal vascular resistance (rRVR) of isolated kidneys preconstricted with phenylephrine (PHE, 0.17-0.35 microM). The vasodilating effect of 0.5 microM bradykinin was significantly inhibited by the nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (95% inhibition) and N(G)-nitro-L-arginine methyl ester (45-75% inhibition). Clotrimazole, an inhibitor of cytochrome P450 pathway but not indomethacin, a cyclooxygenase inhibitor, reduced the renal vasodilator response to bradykinin by 84%. The nonspecific K(+) channel inhibitor, tetraethylammonium ion (TEA) and the selective inhibitor of Ca(2+)-activated K(+) channels, charybdotoxin (ChTX) greatly attenuated the vasodilator response to bradykinin by approximately 84% and 79%, respectively. These two K(+) channel inhibitors showed similar effects on vasodilatation induced by S-nitroso-acetyl-D,L-penicillamine (1 microM), a nitric oxide donor. The results suggest that bradykinin releases nitric oxide which, by opening potassium channels specifically the Ca(+)-dependent type, mediates the renal vasodilator response to bradykinin in the isolated kidney perfused ex situ. 相似文献
|