首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The effect of three different nitrogen sources on the growth of external ectomycorrhizal mycelium was studied in Perspex micorocosms. Nonsterile peat was used as substrate. Five different fungal isolates growing in symbiosis with pine seedlings were investigated: two isolates of Paxillus involutus, one of Suillus bovinus and two unidentified ectomycorrhizal fungi isolated from ectomycorrhizal root tips. Three different nitrogen sources were used: ammonium as (NH4)2SO4, nitrate as NaNO3 and a complete nutrient solution (Ingestad 1979), and three different nitrogen concentrations, 1, 2 or 4 mg N/g dry wt. of peat. The mycelial growth of all fungi was found to be negatively affected by the nitrogen amendments, although the sensitivity to nitrogen varied between the isolates. One of the unidentified isolates was extremely sensitive and growth was completely inhibited by all nitrogen treatments. In contrast, the growth of one of the P. involutus isolates was only slightly reduced by the nitrogen amendments. The different nitrogen sources all reduced growth, and since no significant difference was found between the nitrogen sources or between the different nitrogen concentrations the results were pooled to give one value that summarized the effect of nitrogen on mycelial growth. Thus, the mycelial growth of one of the two P. involutus isolates was reduced to approximately 80% of the growth in the control, the other P. involutus and one of the unidentified fungi, vgk 2 89.10, were reduced to 40–50% of the control growth, S. bovinus to 30% of the control and the most sensitive fungus, the unidentified isolate vg 1 87.10, was reduced to 3% of the growth in the control treatment. In all experiments, the shoot to root ratio generally increased, mainly as a result of increased shoot growth.  相似文献   

2.
3.
Summary Extramatrical mycelium and outer hyphae of the sheath ofEucalyptus pilularis-Pisolithus tinctorius mycorrhizas contain abundant motile tubular vacuoles which accumulate the carboxyfluorescein analogue Oregon Green 488 carboxylic acid. The fluorochrome accumulates in a system of small vacuoles, tubules, and larger vacuoles, which are interlinked, motile, and pleiomorphic, in external hyphae, cords, and hyphae of the outer sheath. There is often a difference in fluorescence between two neighbouring cells, indicating that the dolipore septum exercises control on the movement of material between cells. Generally the motile tubular vacuole system in mycorrhizas resembles that previously found in isolated mycelium. The majority of fungal cells in the sheath contain no fluorochrome even after long exposure of the mycorrhiza to the solution, but with differential interference optics the cells are clearly seen to be alive and to contain vacuoles resembling those in the outer hyphae. In translocation experiments, long-distance transport of the fluorochrome is slow and slight, or even nonexistent in some cases.Abbreviations carboxy-DFF Oregon Green 488 carboxylic acid - carboxy-DFFDA Oregon Green 488 carboxylic acid diacetate - DIC differential interference contrast Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

4.
The rates and controls of ectomycorrhizal fungal production were assessed in a 22-year-old longleaf pine (Pinus palustris Mill.) plantation using a complete factorial design that included two foliar scorching (control and 95% plus needle scorch) and two nitrogen (N) fertilization (control and 5 g N m−2 year−1) treatments during an annual assessment. Ectomycorrhizal fungi production comprised of extramatrical mycelia, Hartig nets and mantles on fine root tips, and sporocarps was estimated to be 49 g m−2 year−1 in the control treatment plots. Extramatrical mycelia accounted for approximately 95% of the total mycorrhizal production estimate. Mycorrhizal production rates did not vary significantly among sample periods throughout the annual assessment (p = 0.1366). In addition, reduction in foliar leaf area via experimental scorching treatments did not influence mycorrhizal production (p = 0.9374), suggesting that stored carbon (C) may decouple the linkage between current photosynthate production and ectomycorrhizal fungi dynamics in this forest type. Nitrogen fertilization had a negative effect, whereas precipitation had a positive effect on mycorrhizal fungi production (p = 0.0292; r 2 = 0.42). These results support the widely speculated but poorly documented supposition that mycorrhizal fungi are a large and dynamic component of C flow and nutrient cycling dynamics in forest ecosystems.  相似文献   

5.
Due to acid rain and nitrogen deposition, there is growing concern that other mineral nutrients, primarily potassium and phosphorus, might limit forest production in boreal forests. Ectomycorrhizal (EcM) fungi are important for the acquisition of potassium and phosphorus by trees. In a field investigation, the effects of poor potassium and phosphorus status of forest trees on the production of EcM mycelium were examined. The production of EcM mycelium was estimated in mesh bags containing sand, which were buried in the soil of forests of different potassium and phosphorus status. Mesh bags with 2% biotite or 1% apatite in sand were also buried to estimate the effect of local sources of nutrients on the production of EcM mycelium. No clear relation could be found between the production of EcM mycelium and nutrient status of the trees. Apatite stimulated the mycelial production, while biotite had no significant effect. EcM root production at the mesh bag surfaces was stimulated by apatite amendment in a forest with poor phosphorus status. The contribution of EcM fungi to apatite weathering was estimated by using rare earth elements (REE) as marker elements. The concentration of REE was 10 times higher in EcM roots, which had grown in contact with the outer surface of apatite-amended mesh bags than in EcM roots grown in contact with the biotite amended or sand-filled mesh bags. In a laboratory study, it was confirmed that REE accumulated in the roots with very low amounts <1 translocated to the shoots. The short-term effect of EcM mycelium on the elemental composition of biotite and apatite was investigated and compared with biotite- and apatite-amended mesh bags buried in trenched soil plots, which were free from EcM fungi. The mesh bags subjected to EcM fungi showed no difference in chemical composition after 17 months in the field. This study suggests that trees respond to phosphorus limitation by increased exploitation of phosphorus-containing minerals by ectomycorrhiza. However, the potential to ameliorate potassium limitation in a similar way appears to be low.  相似文献   

6.
Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building block of chitin, N-acetylglucosamine (NAG)) could be a significant source of C or N to the soil microbiota, and thus an important driver of microbial C and N processing. This paper reports the results of incubation experiments initiated to measure chitin degradation, NAG utilization, and the contribution of these substrates to soil respiration and N mineralization rates in mat-colonized and non-mat soil organic horizons. Amendments of chitin and NAG stimulated respiration, N mineralization, and biomass accumulation in mat and non-mat soils, and responses to NAG amendment were stronger than to chitin amendment. NAG-induced respiration was consistently two-fold higher in mat soils than non-mat soils, but induced N mineralization was similar between the two soil patch types. Assimilation of both C and N into microbial biomass was apparent, biomass C:N ratio decreased in all treatments, and microbial N use efficiency (treatment means 0.25 ± 0.06–0.50 ± 0.05) was greater than C use efficiency (treatment means 0.12 ± 0.04–0.32 ± 0.02). NAGase enzyme response was non-linear and showed the same pattern in chitin and NAG amendments. Responses to NAG and chitin amendment differed between mat and non-mat soils, indicating different mechanisms driving NAG and chitin utilization or differences in saprotrophic community composition between the two soil patch types. Net chitin and NAG processing rates were 0.08–3.4 times the basal respiration rates and 0.07–14 times the ambient net N mineralization rates, high enough for the turnover of total soil amino sugars to potentially occur in days to weeks. The results support the hypotheses that amino sugars are important microbial C and N sources and drivers of C and N cycling in these soils.  相似文献   

7.
8.
In this article we discuss the possible significance of biological processes, and of fungi in particular, in weathering of minerals. We consider biological activity to be a significant driver of mineral weathering in forest ecosystems. In these environments fungi play key roles in organic matter decomposition, uptake, transfer and cycling of organic and inorganic nutrients, biogenic mineral formation, as well as transformation and accumulation of metals. The ability of lichens, mutualistic symbioses between fungi and photobionts such as algae or cyanobacteria, to weather minerals is well documented. The role of mycorrhizal fungi forming symbioses with forest trees is less well understood, but the mineral horizons of boreal forests are intensively colonised by mycorrhizal mycelia which transfer protons and organic metabolites derived from plant photosynthates to mineral surfaces, resulting in mineral dissolution and mobilisation and redistribution of anionic nutrients and metal cations. The mycorrhizal mycelia, in turn provide efficient systems for the uptake and direct transport of mobilised essential nutrients to their host plants which are large sinks. Since almost all (99.99 %) non-suberised lateral plant roots involved in nutrient uptake are covered by ectomycorrhizal fungi, most of this exchange of metabolites must take place through the plant–fungus interface. This idea is still consistent with a linear relationship between soil mineral surface area and weathering rate since the mycelia that emanate from the tree roots will have a larger area of contact with minerals if the mineral surface area is higher. Although empirical models based on bulk soil solution chemistry may fit field data, we argue that biological processes make an important contribution to mineral weathering and that a more detailed mechanistic understanding of these must be developed in order to predict responses to environmental changes and anthropogenic impact.  相似文献   

9.
Accurate estimates of mycelial exudation in time and space are crucial for the assessment of ectomycorrhizal involvement in biogeochemical processes. Knowledge of exudation from mycelia of ectomycorrhizal fungi is still limited, especially for fungi in symbiosis with a host. Pinus sylvestris seedlings colonized by Hebeloma crustuliniforme were grown in aseptic multicompartment dishes. This novel system enabled identification of exudates originating only from extramatrical mycelium. At harvest, hyphal density and numbers were estimated using microscopic imaging. A fractal geometric approach was adopted for calculation of exudation rates. The main compounds identified were oxalate and ferricrocin. The exudation rate for oxalate was 19 +/- 3 fmol per hyphal tip h(-1) (mean +/- standard error of the mean) or 488 +/- 95 fmol hyphal mm(-2) h(-1). Ferricrocin rates were approx. 10 000 times lower. The fractal dimension (D) of the mycelia was 1.4 +/- 0.1, suggesting an explorative growth. Potassium nutrition was a significant regulatory factor for ferricrocin but not oxalate. The results suggest that hyphal exudation may alter the chemical conditions of soil microsites and affect mineral dissolution. Calculations also indicated that oxalate exudation may be a significant carbon sink.  相似文献   

10.
E. Perrin  X. Parlade  J. Pera 《Mycorrhiza》1997,6(6):469-476
 Soil receptiveness to a mycorrhizal association can be estimated by standard bioassay from a dose-response relationship. The method was developed using the association Pinus pinaster or Pseudotsuga menziesii with Laccaria bicolor as a model and was successfully used to characterize the receptiveness of two forest soils. From a physical and chemical point of view, both soils were receptive to the Laccaria bicolor association. Our results show that microbial factors are very important in the receptiveness of soil to ectomycorrhizal association. Ectomycorrhizal development on seedlings at outplanting sites is discussed in relation to soil receptiveness and the ecological competence of selected strains. Accepted: 11 October 1996  相似文献   

11.
12.

Background and aims

Partitioning of soil respiration is a challenging task when resolving the C cycling in forest ecosystems. Our aim was to partition the respiration of newly grown extramatrical ectomycorrhizal mycelium (ECM) and fine roots (and their associated microorganisms) in a young Norway spruce forest.

Methods

Ingrowth mesh bags of 16 cm diameter and 12 cm height were placed in the upper soil and left for 12–16 months in 2010 and 2011. The 2 mm mesh size allowed the ingrowth of ECM and fine roots whereas a 45 μm mesh size allowed only the ingrowth of ECM. The mesh bags were filled with either homogenized EA horizon soil, pure quartz sand (QS) or crushed granite (CG, only 2011), each with five replicates. Controls without any ingrowth were established for each substrate by solid plastic tubes (2010) and by 1 μm mesh bags (2011). Fluxes of CO2 from the mesh bags and controls were measured biweekly during the growing season by the closed chamber method.

Results

The contribution of ECM to soil respiration was largest in the QS treatments, reaching cumulatively 1.2 and 2.2 Mg C ha?1 6 months?1 in 2010 and 2011, respectively. For EA and CG treatments, the cumulative respiration from ECM was larger than from controls, however the differences being not statistically significant. The respiration of newly grown fine roots in QS amounted to 1.0 Mg C ha?1 in 2010, but could not be identified in 2011 since fluxes from 2 mm and 45 μm mesh bags were similar. The correlation of total root length in single QS mesh bags to CO2 fluxes was poor. The contribution of fine root respiration was also not detectable in the EA and CG treatment. No correlation was found between the autumnal biomass of newly grown ECM and its cumulative respiration.

Conclusion

Our results suggest a substantial contribution of newly grown ECM to soil respiration. Respiration of ECM might be larger than respiration of fine roots.  相似文献   

13.
14.
Climate warming is expected to have particularly strong effects on tundra and boreal ecosystems, yet relatively few studies have examined soil responses to temperature change in these systems. We used closed‐top greenhouses to examine the response of soil respiration, nutrient availability, microbial abundance, and active fungal communities to soil warming in an Alaskan boreal forest dominated by mature black spruce. This treatment raised soil temperature by 0.5 °C and also resulted in a 22% decline in soil water content. We hypothesized that microbial abundance and activity would increase with the greenhouse treatment. Instead, we found that bacterial and fungal abundance declined by over 50%, and there was a trend toward lower activity of the chitin‐degrading enzyme N‐acetyl‐glucosaminidase. Soil respiration also declined by up to 50%, but only late in the growing season. These changes were accompanied by significant shifts in the community structure of active fungi, with decreased relative abundance of a dominant Thelephoroid fungus and increased relative abundance of Ascomycetes and Zygomycetes in response to warming. In line with our hypothesis, we found that warming marginally increased soil ammonium and nitrate availability as well as the overall diversity of active fungi. Our results indicate that rising temperatures in northern‐latitude ecosystems may not always cause a positive feedback to the soil carbon cycle, particularly in boreal forests with drier soils. Models of carbon cycle‐climate feedbacks could increase their predictive power by incorporating heterogeneity in soil properties and microbial communities across the boreal zone.  相似文献   

15.
Recent research has shown that the broad empirical relationships used in many ecosystem models to predict carbon turnover and stabilization in soils can fail to capture differences across vegetation types or climates. Theoretically, because energy flow is fundamental to the function of decomposer organisms and ecosystems, energetics could provide complimentary fundamental constraints on soil C dynamics. Often, however, C is considered as a surrogate for energy in studies of detrital decay and C turnover in soil. Bomb calorimetry has long been used to measure stored energy in organic matter, but in detritus not all of the energy is bioavailable. Here I outline an approach to quantify the flux of bioavailable energy dissipated by resident heterotrophic communities in soil organic horizons in situ. I used the principle of energy balance together with a biogeochemical process model parameterized through calorimetric analysis of field samples. I also tested relationships between C and energy across samples of forest detritus (foliar and fine root litter, well‐decayed Oea material, and woody debris), across decay stages, and between a deciduous and coniferous forest at the Harvard Forest, MA, USA. As a first approximation, energy and C concentrations were closely related (within ca. 10%), as were ratios of heterotrophic energy dissipation to C mineralization across types of detritus (within 16%). Differences in energy content and energy : C ratios were measurable in forest detritus (particularly woody vs nonwoody), but did not vary reliably enough between forest types or through detrital stages to indicate that soil C models could be improved by including energetics. Model results indicated that there are strong similarities in energy flows and storage in the O horizons of the contrasting forest types studied at this location. Future research could focus on broader patterns across climates or biomes.  相似文献   

16.
In order to clarify the functional role of individual ectomycorrhizal (EcM) fungal species in the field, we need to relate their abundance and distribution as mycorrhizas to their abundance and distribution as extramatrical mycelium (EMM). We divided each of four 20 cm x 20 cm x 2 cm slices of pine forest soil into 100 cubes of 2 cm x 2 cm. For each cube, ectomycorrhizas were identified and the presence of EMM of the EcM fungi recorded as ectomycorrhizas was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of ITS rDNA. Ectomycorrhizas and EMM of seven EcM species were mapped. Spatial segregation of mycorrhizas and EMM was evident and some species produced their EMM in different soil layers from their mycorrhizas. The spatial relationship between mycorrhizas and their EMM generally conformed to their reported exploration types, but EMM of smooth types (e.g. Lactarius rufus) was more frequent than expected. Different EcM fungi foraged at different spatial scales.  相似文献   

17.
《植物生态学报》2017,41(10):1113
Nearly all tree species develop symbiotic relationships with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi to acquire nutrients from soils, and hence influence soil carbon (C) and nitrogen (N) cycles in terrestrial ecosystems. It is crucial to understand the differences in soil C and N cycles between AM and EM forests and the underlying mechanisms. In this review, we first compared the differences in the soil C and N cycles between AM and EM forests, and synthesized the underlying mechanisms from perspectives of the inputs, stabilization, and outputs of soil C and N in forest ecosystems. We also compared the responses of soil C and N cycles between AM and EM forests to global changes. In this field, one major research priority is comparing the structure and function (including the soil C and N cycles) between AM and EM forest ecosystems to provide theoretical basis and solid data for improving forest productivity and ecosystem services. The second research focus is deepening the understanding of the effects of interactions between aboveground litter and belowground mycorrhiza and free-living microbes on soil C and N cycles to reveal the potential underlying mechanisms in forests with different mycorrhizal symbioses. Third, the research methodology and new techniques need refining and applying to explicitly focus on scaling up the fine-scale measurements to better expound and predict the C and N cycles in forest ecosystems. Finally, more studies on the stability of soil organic matter among different mycorrhizal forests are needed to precisely assess responses of the structure and function of forest ecosystems to global changes.  相似文献   

18.
19.
外生菌根菌在火炬松人工林应用的研究   总被引:1,自引:2,他引:1  
连续6年研究了外生菌根菌在火炬松人工林的应用.结果表明,12个供试菌株均能不同程度地在火炬松根系上形成外生菌根.在12个供试菌株中,以松林小牛肝菌效果最佳,无论是在苗期还是上山造林,对促进寄主生长的效果均最好,且促进寄主生长的效果在立地条件较差的情况下表现得更为明显.  相似文献   

20.
DyDOC describes soil carbon dynamics, with a focus on dissolved organic carbon (DOC). The model treats the soil as a three-horizon profile, and simulates metabolic carbon transformations, sorption reactions and water transport. Humic substances are partitioned into three fractions, one of which is immobile, while the other two (hydrophilic and hydrophobic) can pass into solution as DOC. DyDOC requires site-specific soil characteristics, and is driven by inputs of litter and water, and air and soil temperatures. The model operates on hourly and daily time steps, and can simulate carbon cycling over both long (hundreds-to-thousands of years) and short (daily) time scales. An important feature of DyDOC is the tracking of 14C, from its entry in litter to its loss as DO14C in drainage water, enabling information about C dynamics to be obtained from both long-term radioactive decay, and the characteristic 14C pulse caused by thermonuclear weapon testing during the 1960s ("bomb carbon"). Parameterisation is performed by assuming a current steady state. Values of a range of variables, including C pools, annual DOC fluxes, and 14C signals, are combined into objective functions for least-squares minimisation. DyDOC has been applied successfully to spruce forest sites at Birkenes (Norway) and Waldstein (Germany), and most of the parameters have similar values at the two sites. The results indicate that the supply of DOC from the surface soil horizon to percolating water depends upon the continual metabolic production of easily leached humic material. In contrast, concentrations and fluxes of DOC in the deeper soil horizons are controlled by sorption processes, involving comparatively large pools of leachable organic matter. Times to reach steady state are calculated to be several hundred years in the organic layer, and hundreds-to-thousands of years in the deeper mineral layers. It is estimated that DOC supplies 89% of the mineral soil carbon at Birkenes, and 73% at Waldstein. The model, parameterised with "steady state" data, simulates short-term variations in DOC concentrations and fluxes, and in DO14C, which are in approximate agreement with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号