首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Salt is known to accumulate in the root-zone of Na+ excluding glycophytes under saline conditions. We examined the effect of soil salinity on Na+ and Cl? depletion or accumulation in the root-zone of the halophyte (Atriplex nummularia Lindl).

Methods

A pot experiment was conducted in soil to examine Na+ and Cl? concentrations adjacent to roots at four initial NaCl treatments (20, 50, 200 or 400 mM NaCl in the soil solution). Plant water use was manipulated by leaving plants with all leaves intact, removing approximately 50 % of leaves, or removing all leaves. Daily evapotranspiration was replaced by watering undrained pots to weight with deionised water. After 35-38 days, samples were taken of the bulk soil and of soil loosely- and closely-adhering to the roots.

Results

In plants with leaves intact grown with 200 and 400 mM NaCl, average Na+ and Cl? concentrations in the closely adhering soil were about twice the concentrations of the bulk soil. Ion accumulation increased with final leaf area and with cumulative transpiration over the duration of the trial. By contrast, in plants grown with the lowest salinity treatment (20 mM NaCl), Na+ and Cl? concentrations decreased in the closely adhering soil with increasing leaf area and increasing cumulative water use.

Conclusions

Our data show that Na+ and Cl? are depleted from the root-zone of A. nummularia at low salinity but accumulate in the root-zone at moderate to high salinity, and that the ions are drawn towards the plant in the transpiration stream.  相似文献   

2.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

3.
Cadmium uptake kinetics and plants factors of shoot Cd concentration   总被引:1,自引:0,他引:1  

Background and aims

Accumulation of Cd in the shoots of plants grown on Cd contaminated soils shows considerable variation. A previous preliminary experiment established that one major reason for this variation was the rate of Cd influx into the roots (mol Cd cm?2 root s?1). However, this experiment did not distinguish between solubilization of soil Cd on the one hand and difference in Cd uptake kinetics on the other. The main objectives of the present study were thus to characterize Cd uptake kinetics of plants continuously exposed to Cd concentrations similar to those encountered in soils. Furthermore we determined the factors responsible for differences in shoot Cd concentration such as net Cd influx, root area-shoot dry weight ratio, shoot growth rate and proportion of Cd translocated to the shoot.

Materials and methods

Maize, sunflower, flax and spinach were grown in nutrient solution with five constant Cd concentrations varying from 0 to 1.0 μmol?L?1. Root and shoot parameters as well as Cd uptake were determined at two harvest dates and from these data Cd net influx and shoot growth rates were calculated.

Results and conclusions

Cadmium uptake kinetics, i.e. the net Cd influx vs. Cd solution concentration followed a straight line. Its slope is the root absorbing power, α, $ \left( {\alpha ={{{\mathrm{Cd}\;\mathrm{net}\;\mathrm{influx}}} \left/ {{\mathrm{Cd}\;\mathrm{solution}\;\mathrm{concentration}}} \right.}} \right) $ . The α values of spinach and flax were about double that of maize and sunflower (5?×?10?6?cm?s?1 vs. 2.5?×?10?6?cm?s?1). Spinach and flax had a 3–5 times higher shoot Cd concentration than maize and sunflower. The difference in shoot Cd concentration was partly due to the higher Cd influx but also to a higher translocation of Cd from root to shoot and also to a slower shoot growth rate.  相似文献   

4.

Aims

The objective of this study was to investigate the role of transpiration on accumulation and distribution of thallium (Tl) in young durum wheat (Triticum turgidum L. var ‘Kyle’) and spring canola (Brassica napus L. cv ‘Hyola 401’) plants.

Methods

Seedlings were grown hydroponically and exposed to Tl(I) under different high relative humidity (RH) conditions which resulted in different rates of transpiration among treatments. Plants were harvested prior to exposure, after a dark period of 9 (wheat) or 10?h (canola), and after 24?h of exposure. Harvested plant material was digested and analyzed for Tl by GFAAS.

Results

Our results indicated that accumulation and distribution of Tl by plants was dependent on plant species, Tl(I) dose, duration of exposure and RH, but that the effect of RH was influenced by plant species and Tl dose. Plants exposed to Tl(I) under different RH conditions did not accumulate more Tl overall. In wheat, shoots with higher transpiration rates contained a higher Tl concentration. In canola, the rate of transpiration did not consistently affect the concentration of Tl in shoots.

Conclusions

Overall, our results suggest that accumulation and translocation of Tl by plants is influenced by environmental factors that affect transpiration, in addition to soil characteristics.  相似文献   

5.

Aims

The objective of this study was to determine the relative importance of transpirational pull, Se speciation, sulfate and species on Se accumulation by plants, in order to determine which of these factors must be considered in the future development of models to predict Se accumulation by plants.

Methods

Seedlings of durum wheat (Triticum turgidum L. var durum cv ‘Kyle’) and spring canola (Brassica napus L. var Hyola 401) were grown hydroponically and exposed to SeO 4 2- (selenate) with or without SO 4 2- (sulfate), or to HSeO 3 - (biselenite) under different transpiration regimes altered through ‘low’ (~50%) or ‘high’ (~78%) relative humidity (RH). Plants were harvested after 0, 8, 16, or 24?h exposures, digested, and analyzed for Se by GFAAS.

Results

Accumulation and distribution of Se by plants is dependent on plant species, Se speciation in the nutrient solution, SO 4 2- competition, and transpiration regimes. Canola accumulated and translocated more Se than wheat. In wheat and canola, the greatest accumulation and translocation of Se occurred when plants were exposed to SeO 4 2- without SO 4 2- compared to solutions of SeO 4 2- with SO 4 2- or HSeO 3 2- . Wheat plants exposed to SeO 4 2- and SO 4 2- had an increased Se accumulation and translocation under increased transpiration rates than when exposed to SeO 4 2- without SO 4 2- or HSeO 3 2- . On the other hand, increases in transpiration increased the translocation of Se to canola shoots when exposed to HSeO 3 - more than any other treatments.

Conclusions

Overall, our results suggest that plant species is the most important factor influencing Se accumulation and translocation, but that these endpoints can be modified by climate and specific soil Se or S content. Models to predict accumulation of Se by plants must consider all of these factors to accurately calculate the mechanisms of uptake and translocation.  相似文献   

6.

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H?+?C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H?+?C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H?+?C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.  相似文献   

7.

Background and Aims

The accumulation of cadmium and lead in rice (Oryza sativa L.) grains is a potential threat to human health. In this study, the effect of selenium fertilization on the uptake and translocation of cadmium and lead in rice plants was investigated.

Methods

Rice plants were cultivated using cadmium and lead contaminated soils with selenium addition at three concentrations (0, 0.5 and 1 mg kg?1). At maturity, plants were harvested, and element concentrations in rice tissues were analyzed by using ICP-MS.

Results

Selenium application significantly increased selenium accumulation in rice grain, and markedly decreased cadmium and lead concentrations in rice tissues. In brown rice grains, selenium application reduced cadmium concentrations by 44.4 %, but had no significant effect on lead accumulation. Selenium application significantly decreased metal mobility in soils, at 0.5 mg kg?1 treatment, the translocation factor of cadmium and lead from soil to iron plaque decreased by 71 and 33 % respectively.

Conclusions

The mechanism of selenium mitigating of heavy metal accumulation in rice could be decreasing metal bioavailability in soil. Selenium fertilization could be an effective and feasible method to enrich selenium and reduce cadmium levels in brown rice.  相似文献   

8.
Mercado-Blanco  Jesús  Prieto  Pilar 《Plant and Soil》2012,358(1-2):301-322

Aims

This study aimed to measure the effect of plant diversity on N uptake in grasslands and to assess the mechanisms contributing to diversity effects.

Methods

Annual N uptake into above- and belowground organs and soil nitrate pools were measured in the Jena experiment on a floodplain soil with mixtures of 2–16 species and 1–4 functional groups, and monocultures. In mixtures, the deviation of measured data from data expected from monoculture performance was calculated to assess the contribution of complementarity/facilitation and selection.

Results

N uptake varied from <1 to 45 g?N m?2 yr?1, and was higher in grasslands with than without legumes. On average, N uptake was higher in mixtures (21?±?1 g?N m?2 yr?1) than monocultures (13?±?1 g?N m?2 yr?1), and increased with species richness in mixtures. However, compared to N uptake expected from biomass proportions of species in mixtures, N uptake of mixtures was only slightly higher and a significant surplus N uptake was confined to mixtures containing legumes and non-legumes.

Conclusions

In our study, high N uptake of species rich mixtures was mainly due to dominance of productive species and facilitation by legumes whereas complementarity among non-legumes was of minor relevance.  相似文献   

9.

Background and aims

Soil pH is among the major environmental factors affecting plant growth. Although the optimum range of soil pH for growth and the tolerance of pH extremes widely vary among plant species, the pH tolerance mechanisms in plants are still poorly understood. In this study, possible mechanisms were examined to explain the differences in tolerance of boreal plants to root zone pH.

Methods

In the controlled-environment solution culture experiments, we compared growth, physiological parameters and tissue nutrient concentrations in aspen, white spruce and tamarack seedlings that were subjected to 8 weeks of root zone pH treatments ranging from 5.0 to 9.0.

Results

The pH treatments had little effect on dry weights and net photosynthesis in white spruce seedlings despite reductions in transpiration rates at higher pH levels. In aspen and tamarack, both the growth and physiological parameters significantly decreased at pH higher than 6.0. The chlorosis of young tissues in aspen and tamarack was associated with the reductions in foliar concentrations of several of the examined essential nutrients including Fe and Mn. Although the plants varied in their ability to deliver essential nutrients to growing leaves, there was no direct correlation between tissue nutrient concentrations, chlorophyll concentrations and plant growth. The results also demonstrated strong inhibition of transpiration rates by high pH.

Conclusions

The results suggest that high root zone pH can upset water balance in pH sensitive species including aspen. Although the uptake and assimilation of essential elements such as Fe and Mn contribute to plant tolerance of high soil pH, we did not observe a direct relationship between growth and foliar nutrient concentrations to account for the observed differences in growth.  相似文献   

10.

Background and aims

The importance of seed Ni reserves for plant growth and N metabolism is poorly understood. This study investigated the effects of both seed Ni and externally supplied Ni on the impact of foliarly-applied urea and N-nutritional status of soybean.

Methods

Soybean seeds were produced by growing plants in nutrient solutions containing different Ni levels, and their urease activities were measured. Plants were then grown from these seeds with or without external Ni. After treating half of the plants with foliar urea, the urea damage symptoms, elongation rates and chlorophyll concentrations were followed over one week. Biomass and mineral concentrations of different plant parts were determined.

Results

Nickel supply at increasing rates improved seed yield by up to 25 %. Seeds with Ni concentrations varying between 0.04–8.32 mg.kg?1 were obtained. Depending on the Ni concentration, the seed urease activities differed up to 100-fold. Leaf damage due to foliar urea spray was significantly alleviated by higher seed Ni as well as external Ni supply. Higher Ni also promoted shoot elongation and improved chlorophyll concentrations. Nickel was 10-times more concentrated in the youngest part than in older leaves. In the absence of foliar urea, Ni enhanced the N concentration of the growing part of the shoot by up to 30 %.

Conclusion

A better utilization of foliarly-applied urea-N is achieved in soybean when adequate Ni is supplied to plants by seed reserves and/or externally. High seed Ni levels are also required for preventing foliar urea damage and improving N remobilization.  相似文献   

11.

Aims

To determine soil water diffusivity, D(θ), on undisturbed field soil at medium to low water content (suction range from 10 to 150 m of water), for the purpose of modeling the uptake of water by plant roots.

Methods

The method is based on the analysis of one-step outflow induced by a turbulent stream of dry air over the exposed end of a soil core, with the other end of the core enclosed. The outflow is measured through time as the change in the weight of the core as it sits on a recording balance. D(θ) is calculated by deconvoluting the measured outflow function.

Results

Over the suction range of 10 to 150 m of water, D(θ) calculated on the undisturbed soil ranged from 20?×?10?9 to 10?×?10?9 [m2?s?1], substantially higher than other published estimates over this range in suction.

Conclusions

These unusually large values cast doubt on the view that flow of water to roots limits uptake of water from the targeted subsoil.  相似文献   

12.

Aims

The primary aim of this study was to investigate the impact of active nickel and cadmium transport, transpiration and shoot biomass production on Ni and Cd accumulation in the leaves of the Ni-hyperaccumulator Leptoplax emarginata. A secondary objective was to observe the effects of various concentrations of nickel and cadmium in solutions on the plant growth and ecophysiological characteristics of these plants. Finally, the study sought to identify possible nickel and cadmium concentration gradients in solution as a function of the root distance.

Methods

The Intact Plant Transpiration Stream Concentration Factor (TSCF=xylem/solution solute concentration ratio) was determined for both Ni and Cd and for the selected intact transpiring Ni-hyperaccumulator Leptoplax emarginata, cultivated on two contrasting fertilized and Ni-Cd-contaminated sandy porous media (rhizotrons with central root compartments, linked to Mariotte tubes operated at ?1?kPa). IPTSCFNi and IPTSCFCd were calculated as the ratios between the hyperaccumulator plant’s nickel or cadmium mass in the leaves and the nickel or cadmium concentration in solution by the volume of water transpired during the period of culture. Plant growth characteristics and gas exchanges were also recorded.

Results

IPTSCF values were much greater than 1 (IPTSCFNi?=?5.2?±?0.9 and IPTSCFCd?=?4.4?±?0.6) whatever the amount of available Ni and Cd. This characterized a predominantly active plant metal uptake. Moreover, biological regulation was reported: plant growth and transpiration were significantly lower for hyperaccumulator plants cultivated in sand which was rich in available Ni and Cd, than for hyperaccumulator plants cultivated in topsoil, poor in available Ni and Cd. In the soil rhizosphere, capillary flow was related to transpiration and a depletion pattern was developed for Ni and sometimes for Cd.

Conclusions

Overall, the Intact Plant Transpiration Stream Concentration Factor appeared to be a relevant metal bioconcentration factor taking into account the predominant type of metal transport from roots to leaves, plant growth and transpiration coupling and metal availability. IPTSCFNi and IPTSCFCd values were much greater than 1 and similar whatever the amount of available Ni and Cd. This characterized a predominantly active plant combining Ni and Cd uptake and biological regulations dependent of the Ni and Cd concentrations in solution.  相似文献   

13.
Kai Sun  Juan Liu  Li Jin  Yanzheng Gao 《Plant and Soil》2014,374(1-2):251-262

Aims

Endophytic bacteria are ubiquitous in plants, but little information is available on the influence of endophytic bacteria on the uptake and metabolism of PAH by plants. Thus, we seek to investigate whether the colonization of a target plant by a PAH-degrading endophytic bacterium would improve the PAH metabolism of the plant and reduce the risk of plant PAH contamination.

Methods

A pyrene-degrading endophyte was isolated from PAH-contaminated plants using enrichment culture. After root inoculation with the isolated bacterium, greenhouse container experiments were conducted. Pyrene residues in soil and plant samples were analyzed by HPLC.

Results

A pyrene-degrading endophytic bacterium, Staphylococcus sp. BJ06, was isolated from Alopecurus aequalis and could degrade 56.0 % of pyrene (50 mg?·?L?1) within 15 days. BJ06 grew and degraded pyrene efficiently under environmental conditions. The bacterium significantly promoted ryegrass growth and pyrene removal from contaminated soil in container experiments. The pyrene concentrations in ryegrass roots and shoots in endophyte-inoculated planted soil were reduced by 31.01 % and 44.22 %, respectively, compared with endophyte-free planted soil.

Conclusions

We have provided new perspectives on the regulation and control of plant uptake of organic contaminants with endophytic bacteria. The results of this study will be valuable to risk assessments of plant PAH contamination.  相似文献   

14.

Background and aims

Wetland plants have been widely used in constructed wetlands for the clean-up of metal-contaminated waters. This study investigated the relationship between rate of radial oxygen loss (ROL), root porosity, Zn uptake and tolerance, Fe plaque formation in wetland plants.

Methods

A hydroponic experiment and a pot trial with Zn-contaminated soil were conducted to apply different Zn level treatments to various emergent wetland plants.

Results

Significant differences were found between plants in their root porosities, rates of ROL, Zn uptake and Zn tolerance indices in the hydroponic experiment, and concentrations of Fe and Mn on roots and in the rhizosphere in the pot trial. There were significant positive correlations between root porosities, ROL rates, Zn tolerance, Zn, Fe and Mn concentrations on roots and in the rhizosphere. Wetland plants with higher root porosities and ROL tended to have more Fe plaque, higher Zn concentrations on roots and in their rhizospheres, and were more tolerant of Zn toxicity.

Conclusions

Our results suggest that ROL and root porosity play very important roles in Fe plaque formation, Zn uptake and tolerance, and are useful criteria for selecting wetland plants for the phytoremediation of Zn-contaminated waters and soils/sediments.  相似文献   

15.

Aims

Forest thinning is expected to affect tree water use and carbon assimilation, but the related influence from climate variability is little known. Recent forest thinning in the Wungong catchment coincided with a record dry year following the thinning, which provides a rare opportunity to understand the climate influence on the thinning effect.

Methods

A field experiment was conducted to examine changes before and after thinning, especially the rainfall, soil moisture, leaf water status, tissue isotope signature (13?C and 15?N) and N concentration of overstorey and understorey juvenile trees of Eucalyptus marginata (Donn ex Sm.).

Results

Despite the post-thinning drought, surface soil was moister and juvenile jarrah plants were less water stressed, attributable to reduced rain interception and transpiration as a result of less canopy cover. The overstorey was under stress but mainly due to drought rather than by thinning. The concentration of N declined in both tree stems and juvenile leaves along with available N in soil, suggesting a soil N limitation. No treatment effects were detected from leaf relative water content and tissue isotope signature (13?C and 15?N).

Conclusions

The drought effects were superimposed over the thinning effects on overstorey growth, with stemwood δ13C being a major indicator of water stress. The water relations and carbon assimilation of understorey juveniles were however dependent more on topsoil moisture, and the wetter soil during the year following thinning enhanced growth activity and hence the depletion of 13?C (more negative δ13C) in juvenile leaves.  相似文献   

16.

Background

Poplars accumulate inordinate amounts of B in their leaves and are candidate plants for the remediation of B contaminated soil. We aimed to determine the effect of heterogeneous B distribution in soil by comparing the growth and B accumulation of young Populus tremula trees growing in soil with heterogeneous and homogeneous B distributions.

Methods

The first of two experiments focused on the tolerance and B accumulation of P. tremula under heterogeneous soil B distributions, while the second was designed to study fine root growth under such conditions in detail.

Results

Growth and B accumulation of P. tremula were unaffected by the spatial distribution of B. Root and shoot growth were both reduced simultaneously when leaf B concentrations increased above 800 mg kg?1. In the heterogeneous soil B treatments, root growth was more reduced in spiked soil portions with B concentrations >20 mg kg?1. Fine root length growth was stronger inhibited by B stress than secondary growth.

Conclusions

The root growth responses of P. tremula to B are primarily a systemic effect induced by shoot B toxicity and local toxicity effects on roots become dominant only at rather high soil B concentrations. Local heterogeneity in soil B should have little influence on the phytoremediation of contaminated sites.  相似文献   

17.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

18.
The effect of nitrate uptake, or its absence, on the utilization of nitrate previously accumulated by dark-grown, decpitated maize (Zea mays L., cv. DeKalb XL-45) seedlings was examined. Five-d-old plants that had been pretreated with 50 mM 14NO 3 ? for 20 h were exposed for 8 h to nutrient solutions containing either no nitrate or 50 mM 15NO 3 ? , 98.7 atom % 15N. The ambient solution, xylem exudate, and plant tissue were analyzed to determine the quantities of previously-accumulated (endogenous) 14NO 3 ? that were translocated to the xylem, lost to the solution, or reduced within the tissue during the 8-h period. Energy was continuously available to the roots from the attached endosperm. In the absence of incoming nitrate, appreciable reduction and translocation of the endogenous 14NO 3 ? occurred, but efflux of 14NO 3 ? to the external solution was minimal. In contrast, during 15NO 3 ? uptake, there was considerable efflux of 14NO 3 ? as well as translocation of 14NO 3 ? to the xylem, but little 14NO 3 ? was reduced. Thus there appeared to be an inverse relationship between 14NO 3 ? efflux and reduction. The data are tentatively interpreted on the basis of a model which envisages (a) two storage locations within roots, one of which primarily supplies nitrate for translocation and the other of which primarily supplies nitrate for outward passage through plasmalemma, and (b) the majority of nitrate reduction as occurring during or immediately following influx across the plasmalemma, with endogenous 14NO 3 ? initially moving outward being recycled inward and thereby being reduced.  相似文献   

19.

Background and aims

Take-all, caused by the fungus Gaeumannomyces graminis var. tritici, is the most damaging root disease of wheat. A severe attack often leads to premature ripening and death of the plant resulting in a reduction in grain yield and effects on grain quality (Gutteridge et al. in Pest Manag Sci 59:215–224, 2003). Premature death of the plant could also lead to inefficient use of applied nitrogen (Macdonald et al. in J Agric Sci 129(2):125–154, 1997). The aim of this study was to determine crop N uptake and the amount of residual mineral N in the soil after harvest where different severities of take-all had occurred.

Methods

Plant and soil samples were taken at anthesis and final harvest from areas showing good and poor growth (later confirmed to be caused by take-all disease) in three winter wheat crops grown on the same soil type on Rothamsted Farm in SE England in 1995, 2007 and 2008 (harvest sampling only). All crops received fertiliser N in spring at recomended rates (190–200?kg?N ha?1). On each ocassion crops were assessed for severity of take-all infection (TAR) and crop N uptakes and soil nitrate plus ammonium (SMN) was determined. Grain yields were also measured.

Results

Grain yields (at 85% dry matter) of crops with moderate infection (good crops) ranged from 4.3 to 13.0?t ha?1, compared with only 0.9–4.5?t ha?1 for those with severe infection (poor crops). There were significant (P?<?0.05) negative relationships between crop N uptake and TAR at anthesis and final harvest. At harvest, good crops contained 129–245?kg?N ha?1 in grain, straw and stubble, of which 85–200?kg?N ha?1 was in the grain. In contrast, poor crops contained only 46–121?kg?N ha?1, of which only 22–87?kg?N ha?1 was in the grain. Positive relationships between SMN and TAR were found at anthesis and final harvest. The SMN in the 0–50?cm layer following harvest of poor crops was significantly (P?<?0.05) greater than that under good crops, and most (73–93%) was present as nitrate.

Conclusions

Localised patches of severe take-all infection decreased the efficiency with which hexaploid wheat plants recovered soil and fertiliser derived N, and increased the subsequent risk of nitrate leaching. The risk of gaseous N losses to the atmosphere from these areas may also have been enhanced.  相似文献   

20.
Uptake of amino acids by actidione-treated yeast cells   总被引:1,自引:0,他引:1  
The active uptake ofl-aspartic acid, glycine andl-lysine by actidione-treated cells ofSaccharomyces cerevisiae was found to be inhibited by anaerobic conditions in the absence of a source of energy, only facilitated diffusion persisting. Similarly, metabolic inhibitors (iodoacetamide, sodium fluoride and potassium sorbate) inhibited the uptake very substantially. 2,4-Dinitrophenol and sodium azide appeared to inhibit the movement of the transport carrier itself, while uranyl ions showed a complex interaction pattern, ranging from inhibition at concentrations of 10?6–10?4 m, to stimulation at concentrations of 3×10?4–10?3 m, to pronounced inhibition at higher concentrations. The uptake was pH-dependent with optima forl-aspartic acid near pH 4, for glycine near pH 5, forl-lysine near pH 6.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号