首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tests the hypothesis that female house mice (F1 generation of wild caught Mus domesticus) should preferentially invest in own offspring if confronted with young of different degrees of relatedness. The maternal behaviour of females with litters of 4 own and 4 unrelated alien young (cross-fostered at day 1 of lactation) was analysed during a lactation period of 22 days both under ad libitum and under restricted feeding (food was restricted by 20%). Cross-fostering and restricted feeding had no effect on the amount of time spent nursing until weaning. Under both feeding conditions the females did not differ in their maternal behaviour towards own and alien young: there were no significant differences either in the amount of time spent nursing own versus alien pups or in the time spent licking own versus alien young. Weight gain of own and alien = wild littermates did not differ significantly in mixed litters and was similar both under ad libitum and under restricted feeding. Such indiscriminate behaviour might be adaptive if female house mice prefer to communally nest with a relative and thus improve their inclusive fitness by investing in own and related offspring in a communal nest. Under moderate restricted feeding females could not wean the entire litter but reduced litter size by cannibalizing on average 2.7 pups (75% of the pups were killed when they were 4–8 days old). Females with cross-fostered litters killed as many own as alien young. This suggests that females cannot discriminate between own and unrelated young if cross-fostering takes place at day 1 of lactation. Besides testing kin recognition abilities, the experiments also allow analysis of the weaning strategy of females under food shortage. Under restricted feeding, body weight of the females was significantly lower during middle lactation than under ad libitum feeding. Weaning weight of young in reduced litters under food restriction (9–10 g) did not differ significantly from weaning weight of young in litters of 7–10 young, but was lower than that of young in similar sized litters (litter size 6), under ad libitum feeding. The maternal behaviour of cannibalizing some young under food shortage can be interpreted as a weaning strategy which results in the largest number of offspring that can be raised to a minimal weaning weight of 9–10 g. Such a weaning strategy might represent a favourable trade-off between number and size of young produced.  相似文献   

2.
Non-alcoholic fatty liver disease (NAFLD) has been described as a hepatic manifestation of the metabolic syndrome. When several studies correlated maternal linoleic acid (LA) intake with the development of obesity, only few links have been made between n-6 fatty acid (FA) and NAFLD. Herein, we investigated the influence of both maternal and weaning high LA intake on lipid metabolism and susceptibility to develop later metabolic diseases in offspring. Pregnant rats were fed a control-diet (2% LA) or a LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring was assigned to one of the two diets, i.e., either maintained on the same maternal diet or fed the other diet for 6 months. Physiological, biochemical parameters and hepatic FA metabolism were analyzed. We demonstrated that the interaction between the maternal and weaning LA intake altered metabolism in offspring and could lead to hepatic steatosis. This phenotype was associated with altered hepatic FA content and lipid metabolism. Interaction between maternal and weaning LA intake led to a specific pattern of n-6 and n-3 oxylipins that could participate to the development of hepatic steatosis in offspring. Our findings highlight the significant interaction between maternal and weaning high LA intake to predispose offspring to later metabolic disease and support the predictive adaptive response hypothesis.  相似文献   

3.
Nutrition, fertility and maternal investment in primates   总被引:3,自引:0,他引:3  
Phyllis C.  Lee 《Journal of Zoology》1987,213(3):409-422
While the energetics of reproduction have been intensively investigated among women, studies of mother-offspring relationships among non-human primates have tended to neglect the effect of nutrition of the mother on lactational performance and on growth and survival of offspring. Typically fertility has been compared between populations under different nutritional regimes. In this paper, the relations between suckling frequencies, the time of weaning, the survivorship of offspring, the contraceptive effects of lactation and the quality of maternal diets are outlined. Energy transfer from mother to offspring in the form of milk is proposed as a measurable component of maternal investment, and the behavioural causes and consequences of lactational anoestrus are explored using data from free-ranging vervet monkeys. It is suggested that nutrition of the mother is most important during the early phase of rapid infant growth, because at that time the energetic requirements of lactation are high; and that a mother's ability to assess her infant's demands and needs for nutrition for growth leads to alterations in suckling frequencies which result in variation in female fertility.  相似文献   

4.
Some studies have shown that the mother's nutritional condition may influence offspring's endocrine function through metabolic imprinting. Recently, we showed that the kind of maternal malnutrition during lactation affects adult body weight of the offspring and it is related to milk composition. We studied lactating rats fed an 8 % protein-restricted diet (PR), a control 23 % protein diet (C), and an energy-restricted diet group (ER). After weaning, all animals received a normal diet until they were 180 days of age. At this time, the animals received a single i. p. injection of (131)I and were sacrificed 2 h after the injection. Total triiodothyronine (TT3) and total thyroxin (TT4) serum concentrations were measured by enzyme immunoassay. The PR group had significantly a higher thyroid (131)I uptake, TT3 serum concentration and in TT4 serum concentration, compared to the controls. The ER group had only significantly higher TT3 serum concentration. These results showed that thyroid function regulation in adulthood may depend on maternal nutritional condition during lactation. Probably, PR group had a high thyroid function, whereas the ER group only had an increase in the deiodination of T4. The hyperthyroidism in the PR group could explain the low body weight observed in those animals.  相似文献   

5.
Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (-12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.  相似文献   

6.
Summary Relationships between size, body condition, age and feeding-attendance patterns during pup rearing of female Antacrtic fur seals Arctocephalus gazella and their effects on the timing of birth and weaning, pup weight, growth and condition were studied at South Georgia in 1981–1982. Twenty-seven (6 male, 21 female) mother-pup pairs were followed from birth to weaning. The analysis of maternal effects was limited to female pups because of the small sample size of male weaners. High weaning weight was associated with those female pups whose mothers spent more time ashore attending their offspring. Weaning weight showed no relationship with perinatal duration, number of feeding trips to sea, days at sea or date of weaning. A further 63 mother-pup pairs were analysed for the effects of maternal body condition (weight/length), age and timing of birth on offspring body weight and condition. Pup weight and condition were weakly correlated with maternal age in female pups. Male pups born earlier in the season were heavier and in better condition. Maternal and offspring body weight and condition were unrelated. For the Antarctic fur seal population at South Georgia where the food supply was apparently not limiting in summer, maternal condition and foraging time were subordinate to maternal care on land (as expressed by attendance duration) in determining offspring weight at weaning.  相似文献   

7.
Explaining the seasonal decline in litter size in European ground squirrels   总被引:1,自引:0,他引:1  
In European ground squirrels Spermophilus citellus as in many ground squirrel species. late born litters are composed of fewer young than early born litters. Two alternative though not mutually exclusive hypotheses may explain this seasonal pattern of change in litter size. On the one hand. the production of few large young late in the season may be an adaptation to time limitations on the offspring. that have to complete growth and fattening prior to hibernation. Then one would expect a trade-off between offspring number and size as the breeding season progresses. At its extreme. this hypothesis would predict that total maternal effort should be equal independent of litter size. Alternatively. litter size may be determined by physiological limitations on the mother. in that highly constrained mothers breed later and produce smaller litters. Then one would expect reduced overall maternal effort in highly constrained mothers of smaller litters. In this case. a trade-off between litter size and offspring size would not be expected. We found that total maternal effort in terms of gestation length and the duration of lactation increased with increasing litter size. thus supporting the second hypothesis. Lactation was not terminated at natal emergence. It extended a relatively long period of time beyond the time of first litter emergence depending on litter size. During prolonged lactation. individual young of large litters made up body mass to young of small litters. As a consequence. juvenile weaning body mass was unaffected by litter size although offspring body mass at natal emergence was inversely related to litter size. This additional weight gain in young of large litters compensated for initial survival disadvantages and presumably affected fecundity at yearling age.  相似文献   

8.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM) developed for the treatment of postmenopausal osteoporosis. The purpose of these studies was to evaluate the effects of lasofoxifene on the postnatal development, behavior, and reproductive performance of offspring of female rats given lasofoxifene during organogenesis and lactation. METHODS: Two range-finding studies were conducted to determine the effects of lasofoxifene at doses from 0.01-10 mg/kg on parturition and lactation in pregnant rats and on the early postnatal development of the offspring, and to optimize the dosing regimen. Maternal milk and plasma were sampled for concentrations of lasofoxifene on Lactation Days 4, 7, and 14. In the pre- and postnatal development study, lasofoxifene was administered to pregnant and lactating rats by oral gavage at dose levels of 0.01, 0.03, and 0.1 mg/kg on Gestation Days 6-17 and Lactation Days 1-20. Maternal body weight and food consumption were measured throughout pregnancy, and body weight was measured throughout lactation. Parturition was monitored closely. The F1 offspring were measured for viability, body weight, anogenital distance, the appearance of postnatal developmental indices and reflex behaviors, sensory function, in an age-appropriate functional observational battery, motor activity, auditory startle, passive avoidance, and the Cincinnati Water Maze. The F1 generation was assessed for reproductive function, and the F2 offspring were measured for body weight and viability throughout the lactation period. RESULTS: In the range-finding studies, indications of maternal toxicity included decreased body weight and food consumption, increased length of gestation, prolonged parturition, dystocia, and increased offspring mortality at birth. Concentrations of lasofoxifene in maternal plasma were similar to those in milk, increased with increasing dose, and remained consistent over a 10-day period. In the pre- and postnatal development study, maternal body weights and food consumption were decreased in all treated groups during gestation. Length of gestation was increased, parturition was prolonged, and dystocia was noted in the dams in the 0.1 mg/kg group. There was increased pup mortality in the F1 litters in the 0.1 mg/kg group and all treated groups had decreased offspring body weights beginning at 1 week of age, continuing into the postweaning period and, for the F1 males, into adulthood. Female F1 offspring in the 0.03 and 0.1 mg/kg groups had increased body weights as adults. There were delays in the age of appearance of preputial separation in the males in the 0.1 mg/kg group and vaginal opening in the females in all treated groups. Body temperature was decreased by <0.5 degrees C after weaning for male and female offspring in the 0.1 mg/kg group. The sensory, behavioral, and functional measures, including the tests of learning and memory, were unaffected by treatment. Mating success was lower for the F1 animals in the 0.1 mg/kg group, but there were no effects on the reproductive parameters. Mating, reproduction, and maternal behavior of the F1 animals in the 0.01 and 0.03 mg/kg groups and the survival and body weights of the F2 offspring in all treated groups through Postnatal Day 21 were unaffected by treatment. CONCLUSION: The maternal findings in this study were related to the pharmacologic activity of lasofoxifene. Inhibition of growth of the F1 offspring after perinatal exposure to lasofoxifene was observed, but there were no significant effects on the sensory, behavioral, or functional measures, including learning and memory. There were no effects on the F2 generation. The findings are consistent with those reported for at least one other SERM. The findings of this study do not suggest increased risk for the primary indication of use in postmenopausal women.  相似文献   

9.
Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1) control : control diet during pregnancy and lactation (CON); 2) CON supplemented with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (high fat, high fructose) during pregnancy and lactation (MO); or 4) MO supplemented with taurine (MOT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation may ameliorate the adverse effects observed in offspring following a maternal obesogenic diet but these effects are dependent upon prior maternal nutritional background.  相似文献   

10.
Maternal low-protein diet during pregnancy is a risk factor for cardiovascular disease of the offspring in later life. The impact of high-protein diet during pregnancy on the cardiovascular phenotype of the offspring, however, is still unknown. We examined the influence of a high-protein diet during pregnancy and lactation on the renal, hemodynamic, and metabolic phenotype of the F1 generation. Female Wistar rats were either fed a normal protein diet (20% protein: NP) or an isocaloric high-protein diet (40% protein: HP) throughout pregnancy and lactation. At weaning, the offspring were fed with standard diet, and they were allocated according to sex and maternal diet to four groups: normal-protein male (NPm, n = 25), normal-protein female (NPf, n = 19), high-protein male (HPm, n = 24), high-protein female (HPf, n = 29). During the experiment (22 wk), the animals were characterized by repeated measurement of body weight, food intake, blood pressure, glucose tolerance, energy expenditure, and kidney function. At the end of the study period histomorphological analyses of the kidneys and weight measurement of reproductive fat pads were conducted. There were no differences in birth weight between the study groups. No influence of maternal diet on energy expenditure, glucose tolerance, and plasma lipid levels was detected. Blood pressure and glomerulosclerosis were elevated in male offspring only, whereas female offspring were characterized by an increased food efficiency, higher body weight, and increased fat pads. Our study demonstrates that a high-protein diet during pregnancy and lactation in rats programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner.  相似文献   

11.
Meadow vole dams, housed in a 14L:10D photoperiod were injected daily 3 h before onset of darkness with 10 micrograms melatonin. Treatment during gestation or lactation produced offspring that exhibited altered somatic, testicular, and pelage growth. Gestational melatonin treatment decreased preweaning weight gain, delayed testicular development, and increased pelage growth in offspring, whereas melatonin treatment during lactation increased pelage depth at weaning and increased post-weaning somatic growth. These results suggest that pre- and postnatal maternal melatonin secretory patterns influence postnatal development of photosensitive traits in offspring.  相似文献   

12.
The perinatal exposome can modify offspring metabolism and health later in life. Within this concept, maternal exercise during gestation has been reported modifying offspring glucose sensing and homeostasis, while the impact of such exercise during lactation is little-known. We thus aimed at evaluating short- and long-term effects of it on offspring pancreatic function, assuming a link with changes in breast milk composition. Fifteen-week-old primiparous female Wistar rats exercised during lactation at a constant submaximal intensity (TR) or remained sedentary (CT). Male offspring were studied at weaning and at 7 months of age for growth, pancreas weight, glycemia and insulin responses. Milk protein content was determined by the bicinchoninic acid assay (BCA colorimetric method), and lipid content and fatty acid composition by gas chromatography. Mature milk from TR rats contained significantly less saturated (?7 %) and more monounsaturated (+18 %) and polyunsaturated (PUFA +12 %) fatty acids compared to CT rats, with no difference in total lipid and protein concentrations. In offspring from TR vs CT mothers, fasting glycemia was lower, pancreas weight was higher with a lower insulin content (?37 %) at weaning. Such outcomes were correlated with milk PUFA levels and indices of desaturase or elongase activities. These effects were no longer present at 7 months, whereas a more efficient muscle insulin sensitivity was observed. Maternal training during lactation led to a specific milk phenotype that was associated with a short-term impact on glucose homeostasis and pancreatic function of the male offspring.  相似文献   

13.
This study assessed the effect of predisposition to perform harmful social behaviour, maternal rearing environment, and lactation environment on the responses of pigs to weaning at 3 or 5 weeks of age. Predisposed and non-predisposed gilts were selected as dams for this study at 7 weeks of age. Selection was based on behaviour in a “tail chew” test and performance of harmful social behaviour towards penmates. The gilts were mated at puberty with boars of a similar predisposition, and farrowed at approximately 44 weeks of age. Half of the gilts of each predisposition were reared from the time of selection until farrowing in barren environments, and half in enriched environments. During lactation, gilts and litters were either housed in a similar environment to that which gilts had experienced during rearing, or in a different environment (i.e. in terms of being barren or enriched). Litters from each treatment group were weaned at either 3 weeks of age (early weaning), or 5 weeks of age. After weaning, piglets were regrouped and housed in slatted pens without access to substrates. Non-predisposition to perform harmful social behaviour was associated with reduced growth during the post-weaning period (P < 0.01), and increased belly nosing behaviour in response to early weaning (P < 0.05). These effects were not mitigated by maternal experience or lactation environment factors, and it is concluded that this type of selection may not be commercially viable. Rearing dams in barren rather than enriched environments led to reduced welfare in offspring. This was reflected in increased adrenocortical reactivity during the lactation period (P < 0.01), and increased belly nosing behaviour in response to early weaning (P < 0.05). The effect of barren maternal rearing environments on belly nosing behaviour by offspring was eliminated when pigs were housed in enriched lactation environments (P < 0.01). Enrichment during the lactation period also led to improved growth rates in the post-weaning period (P < 0.01). It is suggested that this effect was due to an enhanced ability to cope with the weaning process. Overall, the results show that both genetic and early environmental factors are important determinants of the responses of pigs to weaning. Adverse effects of barren maternal rearing environments may be overcome by housing pigs in enriched lactation environments.  相似文献   

14.
Little is known about the occurrence of individual variation in sexual behavior and how maternal nutrition can affect this variation. We tested the hypothesis that male offspring of female meadow voles, Microtus pennsylvanicus, that were 30% food restricted (FR) during days 1–7 of lactation (FR 1–7), days 8–14 of lactation (FR 8–14), or late days 15–21 of lactation (FR 15–21) lactation show persistent, negative effects on their sexual behavior as adults relative to male offspring of females that were not food restricted. We measured three components of sexual behavior, attractivity, proceptivity, and receptivity, beginning when the males were 98 d of age. Food restriction during middle lactation (FR 8–14) but not during early (FR 1–7) and late lactation (FR 15–21) was sufficient to induce adult male voles to produce anogenital marks that were not as attractive as those produced by control males. Food restriction during lactation did not affect the proceptive behavior of male voles but did affect their receptivity. Only four of 12 FR 8–14 male voles mated compared to nine of 12 FR 1–7 males, eight of 12 FR 15–21 males, and eight of 11 control males. However, no differences existed in their copulatory behavior among the males that did mate. The body weight of FR 1–7 and FR 8–14 males was lower than that of FR 15–21 and control males when they were between 22 d of age (weaning) and 48 d of age (puberty) but was similar when the males were 98 d of age. Food intake was similar for the FR and control males between day 22 and day 98. It remains unclear, however, whether this type of maternal effect represents strategic programing of offspring behavior in response to the environment experienced by mothers or is a product of developmental processes of food restriction prior to weaning (Evolution 58 , 2004, 2574).  相似文献   

15.
We examined the effects on offspring of ingestion of the 1975 Japanese diet during pregnancy and lactation and after weaning in mice. Pregnant dams were divided into groups that were fed the Japanese diet or a control diet and raised until offspring were weaned. The offspring after weaning were further divided into groups that were raised on the Japanese diet or the control diet. Ingestion of the Japanese diet after weaning suppressed accumulation of visceral fat in offspring, and reduced the amount of lipids in serum and liver. This effect was weakened if the Japanese diet was only ingested during pregnancy and lactation. Therefore, it was suggested that ingestion of the Japanese diet of mothers during pregnancy and lactation weakens the lipid accumulation inhibitory effect of the Japanese diet in children.  相似文献   

16.
The foetal mammary gland is sensitive to maternal weight and nutrition during gestation, which could affect offspring milk production. It has previously been shown that ewes born to dams offered maintenance nutrition during pregnancy (day 21 to 140 of gestation) produced greater milk, lactose and CP yields in their first lactation when compared with ewes born to dams offered ad libitum nutrition. In addition, ewes born to heavier dams produced greater milk and lactose yields when compared with ewes born to lighter dams. The objective of this study was to analyse and compare the 5-year lactation performance of the previously mentioned ewes, born to heavy or light dams that were offered maintenance or ad libitum pregnancy nutrition. Ewes were milked once per week, for the first 6 weeks of their lactation, for 5 years. Using milk yield and composition data, accumulated yields were calculated over a 42-day period for each year for milk, milk fat, CP, true protein, casein and lactose using a Legendre orthogonal polynomial model. Over the 5-year period, ewes born to heavy dams produced greater average milk (P=0.04), lactose (P=0.01) and CP (P=0.04) yields than offspring born to light dams. In contrast, over the 5-year period dam nutrition during pregnancy did not affect average (P>0.05) offspring milk yields or composition, but did increase milk and lactose accumulated yield (P=0.03 and 0.01, respectively) in the first lactation. These results indicate that maternal gestational nutrition appears to only affect the first lactational performance of ewe offspring. Neither dam nutrition nor size affected grand-offspring live weight gain to, or live weight at weaning (P>0.05). Combined these data indicate that under the conditions of the present study, manipulating dam weight or nutrition in pregnancy can have some effects of offspring lactational performance, however, these effects are not large enough to alter grand-offspring growth to weaning. Therefore, such manipulations are not a viable management tool for farmers to influence lamb growth to weaning.  相似文献   

17.
Maternal effects on development are profound. Together, genetic and epigenetic maternal effects define the developmental trajectory of progeny and, ultimately, offspring phenotype. Maternally provisioned environmental conditions and signals affect conceptus, fetoplacental and postnatal development from the time of conception until weaning. In the pig, reproductive tract development is completed postnatally. Porcine uterine growth and uterine endometrial development occur in an ovary-independent manner between birth (postnatal day = PND 0) and PND 60. Milk-borne bioactive factors (MbFs), exemplified by relaxin, communicated from lactating dam to nursing offspring via a lactocrine mechanism, represent an important source of extraovarian uterotrophic support in the neonatal pig. Lactocrine deficiency from birth affects both the neonatal porcine uterine developmental program and trajectory of uterine development, with lasting consequences for endometrial function and uterine capacity in adult female pigs. The potential lactocrine signaling window extends from birth until the time of weaning. However, it is likely that the maternal lactocrine programming window – that period when MbFs communicated to nursing offspring have the greatest potential to affect critical organizational events in the neonate – encompasses a comparatively short period of time within 48 h of birth. Lactocrine deficiency from birth was associated with altered patterns of endometrial gene expression in neonatally lactocrine-deficient adult gilts during a critical period for conceptus–endometrial interaction on pregnancy day 13, and with reduced litter size, estimated at 1.4 pigs per litter, with no effect of parity. Data were interpreted to indicate that reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Observations to date suggest that lactocrine-dependent maternal effects program postnatal development of the porcine uterus, endometrial functionality and uterine capacity. In this context, reproductive management strategies and husbandry guidelines should be refined to ensure that such practices promote environmental conditions that will optimize uterine capacity and fecundity. This will entail careful consideration of factors affecting lactation, the quality and abundance of colostrum/milk, and practices that will afford neonatal pigs with the opportunity to nurse and consume adequate amounts of colostrum.  相似文献   

18.
We investigated whether maternal over-nutrition during pregnancy and lactation affects the offspring’s lipid metabolism at weaning by assessing liver lipid metabolic gene expressions and analysing its mechanisms on the development of metabolic abnormalities. Female Sprague–Dawley rats were fed with standard chow diet (CON) or high-fat diet (HFD) for 8 weeks, and then continued feeding during gestation and lactation. The offspring whose dams were fed with HFD had a lower birth weight but an increased body weight with impaired glucose tolerance, higher serum cholesterol, and hepatic steatosis at weaning. Microarray analyses showed that there were 120 genes differently expressed between the two groups. We further verified the results by qRT-PCR. Significant increase of the lipogenesis (Me1, Scd1) gene expression was found in HFD (P<0.05), and up-regulated expression of genes (PPAR-α, Cpt1α, Ehhadh) involved in β-oxidation was also observed (P<0.05), but the Acsl3 gene was down-regulated (P<0.05). Maternal over-nutrition could not only primarily induce lipogenesis, but also promote lipolysis through an oxidation pathway as compensation, eventually leading to an increased body weight, impaired glucose tolerance, elevated serum cholesterol and hepatic steatosis at weaning. This finding may provide some evidence for a healthy maternal diet in order to reduce the risk of metabolic diseases in the early life of the offspring.  相似文献   

19.
To investigate the early renal alterations due to severe maternal protein restriction (MPR) Wistar dams received 23% (normal protein, NP) or 5% (low protein, LP) chow during gestation and lactation periods. In NP offspring at birth, the cortex-to-medulla (C/M) ratio was 35% greater in female than in male offspring and the mature/immature glomeruli ratio was lower in both sexes of LP offspring than in the matched NP ones (by 20%). At birth and at weaning the kidney of the LP offspring showed fewer glomeruli (40% less) than the age-matched NP offspring. The NP female offspring had almost 20% fewer glomeruli than the matched male offspring. At weaning, the number of glomeruli was positively correlated with BM at birth (R=0.86; P<0.001). The effects of gender and maternal protein restriction, both individually and overall, based on biometrical and stereological parameters were: day 1, MPR largely responsible for the majority of alterations observed in LP groups, however gender influenced C/M ratio; day 21, MPR and gender interacted and modified the number of glomeruli per kidney. The early adverse of MPR effect on renal development is disproportionate between mature and immature glomeruli at birth leading to fewer glomeruli at weaning. This supports epidemiological data in humans underlying why fetuses with low birth weight carry an increased risk of mortality from chronic diseases in adulthood, including hypertension.  相似文献   

20.
Protein malnutrition during neonatal programs for a lower body weight and hyperthyroidism in the adult offspring were analyzed. Liver deiodinase is increased in such animals, contributing to the high serum triiodothyronine (T3) levels. The level of deiodinase activities in other tissues is unknown. We analyzed the effect of maternal protein restriction during lactation on thyroid, skeletal muscle, and pituitary deiodinase activities in the adult offspring. For pituitary evaluation, we studied the in vitro, thyrotropin-releasing hormone (TRH)-stimulated thyroid-stimulating hormone (TSH) secretion. Lactating Wistar rats and their pups were divided into a control (C) group, fed a normal diet (23% protein), and a protein-restricted (PR) group, fed a diet containing 8% protein. At weaning, pups in both groups were fed a normal diet until 180 days old. The pituitary gland was incubated before and after TRH stimulation, and released TSH was measured by radioimmunoassay. Deiodinase activities (D1 and D2) were determined by release of (125)I from [(125)I]reverse triiodothyronine (rT3). Maternal protein malnutrition during lactation programs the adult offspring for lower muscle D2 (-43%, P<0.05) and higher muscle D1 (+83%, P<0.05) activities without changes in thyroidal deiodinase activities, higher pituitary D2 activity (1.5 times, P<0.05), and lower TSH response to in vitro TRH (-56%, P<0.05). The evaluations showed that the lower in vivo TSH detected in adult PR hyperthyroid offspring, programmed by neonatal undernutrition, may be caused by an increment of pituitary deiodination. As described for liver, higher skeletal muscle D1 activity suggests a hyperthyroid status. Our data broaden the knowledge about the adaptive changes to malnutrition during lactation and reinforce the concept of neonatal programming of the thyroid function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号