首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NADH peroxidase (EC 1.11.1.1) previously isolated from Streptococcus faecalis 10C1 has been crystallized. The crystal structure has been solved by multiple isomorphous replacement and solvent-flattening at 3.3 A (1 A = 0.1 nm) resolution. The enzyme forms a tetramer consisting of 4 crystallographically related subunits. The monomer chain fold is in general similar to those of glutathione reductase and lipoamide dehydrogenase. FAD binds in the same region and in a similar conformation as in glutathione reductase. The unusual cysteine-sulfenic acid participating in catalysis is located at the isoalloxazine of FAD.  相似文献   

3.
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 A resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs.  相似文献   

4.
The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision-induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis . The gene was overexpressed in Escherichia coli , which does not contain any ATP-dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P-Ser-HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose-metabolizing Streptococci . At low ATP levels, the enzyme hydrolyses P-Ser-HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P-Ser-HPr according to the metabolic state of the cell; P-Ser-HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P-Ser-HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose-1,6-bisphosphate was also present.  相似文献   

5.
Human coactosin-like protein (CLP) shares high homology with coactosin, a filamentous (F)-actin binding protein, and interacts with 5LO and F-actin. As a tumor antigen, CLP is overexpressed in tumor tissue cells or cell lines, and the encoded epitopes can be recognized by cellular and humoral immune systems. To gain a better understanding of its various functions and interactions with related proteins, the crystal structure of CLP expressed in Escherichia coli has been determined to 1.9 A resolution. The structure features a central beta-sheet surrounded by helices, with two very tight hydrophobic cores on each side of the sheet. CLP belongs to the actin depolymerizing protein superfamily, and is similar to yeast cofilin and actophilin. Based on our structural analysis, we observed that CLP forms a polymer along the crystallographic b axis with the exact same repeat distance as F-actin. A model for the CLP polymer and F-actin binding has therefore been proposed.  相似文献   

6.
The three-dimensional structure of pseudoazurin, a single copper-containing protein from Alcaligenes faecalis strain S-6, has been determined at 2.9 A resolution by X-ray crystallography. The sequences of two other pseudoazurins from Pseudomonas AM1 and Achromobacter cycloclastes may also be accommodated in this structure. The structure, an eight-stranded beta-barrel, resembles closely those of plastocyanin and azurin. It possesses two extra alpha-helices at the C-terminus, whereas azurins have an alpha-helical flap in the middle of their sequences.  相似文献   

7.
8.
According to the current edition of the Bergey's Manual of Systematic Bacteriology [11] the tyrosine decarboxylation test allows the differentiation of enterococci. Tyrosine is decarboxylated to the biogenic amine tyramine by E. faecalis and not by E. faecium strains. In the present study we sequenced the16S rDNA of two tyramine-producing strains, BIFI-56 and BIFI-58, presumptively classified as E. faecalis. Their 16S rDNA were identical to the same fragment from the E. faecium type strain. Several E. faecium strains were then checked for their ability to decarboxylate tyrosine and also a putative tyrosine decarboxylase-coding gene was PCR amplified from these strains. All the strains confirmed as E. faecium produced tyramine and possessed a DNA fragment coding for a putative tyrosine decarboxylase. The concordance of the two methods allows us to conclude that the tyrosine decarboxylase test cannot be used in the differentiation of E. faecalis from E. faecium since at least some E. faecium strains are tyramine producers.  相似文献   

9.
Shu W  Liu J  Ji H  Lu M 《Journal of molecular biology》2000,299(4):1101-1112
The outer membrane lipoprotein of the Escherichia coli cell envelope has characteristic lipid modifications at an amino-terminal cysteine and can exist in a form bound covalently to the peptidoglycan through a carboxyl-terminal lysine. The 56-residue polypeptide moiety of the lipoprotein, designated Lpp-56, folds into a stable, trimeric helical structure in aqueous solution. The 1.9 A resolution crystal structure of Lpp-56 comprises a parallel three-stranded coiled coil including a novel alanine-zipper unit and two helix-capping motifs. The amino-terminal motif forms a hydrogen-bonding network anchoring an umbrella-shaped fold. The carboxyl-terminal motif uses puckering of the tyrosine side-chains as a unique docking arrangement in helix termination. The structure provides an explanation for assembly and insertion of the lipoprotein molecules into the outer membrane of gram-negative bacteria and suggests a molecular target for antibacterial drug discovery.  相似文献   

10.
Wild flowers in the South of Spain were screened for Enterococcus faecalis and Enterococcus faecium. Enterococci were frequently associated with prickypear and fieldpoppy flowers. Forty-six isolates, from 8 different flower species, were identified as E. faecalis (28 isolates) or E. faecium (18 isolates) and clustered in well-defined groups by ERIC-PCR fingerprinting. A high incidence of antibiotic resistance was detected among the E. faecalis isolates, especially to quinupristin/dalfopristin (75%), rifampicin (68%) and ciprofloxacin (57%), and to a lesser extent to levofloxacin (35.7%), erythromycin (28.5%), tetracycline (3.5%), chloramphenicol (3.5%) and streptomycin (3.5%). Similar results were observed for E. faecium isolates, except for a higher incidence of resistance to tetracycline (17%) and lower to erythromycin (11%) or quinupristin/dalfopristin (22%). Vancomycin or teicoplanin resistances were not detected. Most isolates (especially E. faecalis) were proteolytic and carried the gelatinase gene gelE. Genes encoding other potential virulence factors (ace, efaA fs, ccf and cpd) were frequently detected. Cytolysin genes were mainly detected in a few haemolytic E. faecium isolates, three of which also carried the collagen adhesin acm gene. Hyaluronidase gene (hyl Efm ) was detected in two isolates. Many isolates produced bacteriocins and carried genes for enterocins A, B, and L50 mainly. The similarities found between enterococci from wild flowers and those from animal and food sources raise new questions about the puzzling lifestyle of these commensals and opportunistic pathogens.  相似文献   

11.
The crystal structure of the fully oxidized form of ascorbate oxidase (EC 1.10.3.3) from Zucchini has been refined at 1.90 A (1 A = 0.1 nm) resolution, using an energy-restrained least-squares refinement procedure. The refined model, which includes 8764 protein atoms, 9 copper atoms and 970 solvent molecules, has a crystallographic R-factor of 20.3% for 85,252 reflections between 8 and 1.90 A resolution. The root-mean-square deviation in bond lengths and bond angles from ideal values is 0.011 A and 2.99 degrees, respectively. The subunits of 552 residues (70,000 Mr) are arranged as tetramers with D2 symmetry. One of the dyads is realized by the crystallographic axis parallel to the c-axis giving one dimer in the asymmetric unit. The dimer related about this crystallographic axis is suggested as the dimer present in solution. Asn92 is the attachment site for one of the two N-linked sugar moieties, which has defined electron density for the N-linked N-acetyl-glucosamine ring. Each subunit is built up by three domains arranged sequentially on the polypeptide chain and tightly associated in space. The folding of all three domains is of a similar beta-barrel type and related to plastocyanin and azurin. An analysis of intra- and intertetramer hydrogen bond and van der Waals interactions is presented. Each subunit has four copper atoms bound as mononuclear and trinuclear species. The mononuclear copper has two histidine, a cysteine and a methionine ligand and represents the type-1 copper. It is located in domain 3. The bond lengths of the type-1 copper centre are comparable to the values for oxidized plastocyanin. The trinuclear cluster has eight histidine ligands symmetrically supplied from domain 1 and 3. It may be subdivided into a pair of copper atoms with histidine ligands whose ligating N-atoms (5 NE2 atoms and one ND1 atom) are arranged trigonal prismatic. The pair is the putative type-3 copper. The remaining copper has two histidine ligands and is the putative spectroscopic type-2 copper. Two oxygen atoms are bound to the trinuclear species as OH- or O2- and bridging the putative type-3 copper pair and as OH- or H2O bound to the putative type-2 copper trans to the copper pair. The bond lengths within the trinuclear copper site are similar to comparable binuclear model compounds. The putative binding site for the reducing substrate is close to the type-1 copper.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Johnson KA  Kim E  Teeter MM  Suh SW  Stec B 《FEBS letters》2005,579(11):2301-2306
Crystal structure of ubiquitous toxin from barley alpha-hordothionin (alpha-HT) has been determined at 1.9A resolution by X-ray crystallography. The primary sequence as well as the NMR solution structure of alpha-HT firmly established that alpha-HT belongs to a family of membrane active plant toxins-thionins. Since alpha-HT crystallized in a space group (P4(1)2(1)2) that is different from the space group (I422) of previously determined alpha(1)- and beta-purothionins, and visocotoxin A3, therefore, it provided independent information on protein-protein interactions that may be relevant to the toxin mechanism. The structure of alpha-HT not only confirms overall architectural features (crambin fold) but also provides an additional confirmation of the role for crucial solute molecules, that were postulated to be directly involved in the mechanism of toxicity for thionins.  相似文献   

13.
14.
The crystal structure of Hg(II)-plastocyanin has been determined and refined at a resolution of 1.9 A. The crystals were prepared by soaking crystals of Cu(II)-plastocyanin from poplar leaves (Populus nigra var. italica) in a solution of a mercuric salt. Replacement of the Cu(II) atom in plastocyanin by Hg(II) causes only minor changes in the geometry of the metal site, and there are few significant changes elsewhere in the molecule. It is concluded that, as in the case of the native protein, the geometry of the metal site is determined by the polypeptide. The weak metal-S(methionine) bond found in Cu(II)-plastocyanin remains weak in Hg(II)-plastocyanin. The "flip" of a proline side chain close to the metal site from a C gamma-exo conformation in Cu(II)-plastocyanin to a C gamma-endo conformation in Hg(II)-plastocyanin suggests that this region of the molecule is particularly flexible. Crystallographic evidence for the close similarity of the Hg(II)- and Cu(II)-plastocyanin structures was originally obtained from electron density difference maps at 2.5-A resolution. The refinement of the structure was begun with a set of atomic coordinates taken from the structure of Cu(II)-plastocyanin. A Hg(II) atom was substituted for the Cu(II) atom, and the side chains of 6 residues in the vicinity of the metal site were omitted. Three series of stereochemically restrained least-squares refinement calculations were interspersed with two stages of model adjustment followed by phase extension. Fifty-nine water molecules were located. The final structure has a crystallographic residual R = 0.16.  相似文献   

15.
The structure of bovine F(1)-ATPase, crystallized in the presence of AMP-PNP and ADP, but in the absence of azide, has been determined at 1.9A resolution. This structure has been compared with the previously described structure of bovine F(1)-ATPase determined at 1.95A resolution with crystals grown under the same conditions but in the presence of azide. The two structures are extremely similar, but they differ in the nucleotides that are bound to the catalytic site in the beta(DP)-subunit. In the present structure, the nucleotide binding sites in the beta(DP)- and beta(TP)-subunits are both occupied by AMP-PNP, whereas in the earlier structure, the beta(TP) site was occupied by AMP-PNP and the beta(DP) site by ADP, where its binding is enhanced by a bound azide ion. Also, the conformation of the side chain of the catalytically important residue, alphaArg-373 differs in the beta(DP)- and beta(TP)-subunits. Thus, the structure with bound azide represents the ADP inhibited state of the enzyme, and the new structure represents a ground state intermediate in the active catalytic cycle of ATP hydrolysis.  相似文献   

16.
The initial critical step of reduction of the azo bond during the metabolism of azo dyes is catalyzed by a group of NAD(P)H dependant enzymes called azoreductases. Although several azoreductases have been identified from microorganisms and partially characterized, very little is known about the structural basis for substrate specificity and the nature of catalysis. Enterococcus faecalis azoreductase A (AzoA) is a highly active azoreductase with a broad spectrum of substrate specificity and is capable of degrading a wide variety of azo dyes. Here, we report the crystal structure of the AzoA from E. faecalis determined at 2.07 A resolution with bound FMN ligand. Phases were obtained by single wavelength anomalous scattering of selenomethionine labeled protein crystals. The asymmetric unit consisted of two dimers with one FMN molecule bound to each monomer. The AzoA monomer takes a typical NAD(P)-binding Rossmann fold with a highly conserved FMN binding pocket. A salt bridge between Arg18 and Asp184 restricts the size of the flavin binding pocket such that only FMN can bind. A putative NADH binding site could be identified and a plausible mechanism for substrate reduction is proposed. Expression studies revealed azoA gene to be expressed constitutively in E. faecalis.  相似文献   

17.
18.
We report the crystal structure of an enolase from Enterococcus hirae, which is the first report of a structure determination among gram-positive bacteria. We isolated the enolase gene and determined the base sequence. The amino acid sequence deduced from the DNA sequence suggests that this enolase is composed of 431 amino acids. The amino acid sequence is very similar to those of enolases from eukaryotic and prokaryotic organisms, being 65% and 50% identical to enolases from Escherichia coli and yeast, respectively. The enolase prepared from E. hirae lysate yielded crystals containing one dimer per asymmetric unit. X-ray diffraction patterns were obtained at 2.8 A resolution on a SPring-8 synchrotron radiation source. Crystals belong to space group I4 with unit cell dimensions of a = b = 153.5 A, c = 90.7 A. The E. hirae, yeast, E. coli and lobster enolase structures are very similar. The E. hirae enolase takes an "Open" conformation. The regions in the structure that differ most from other enolases are loops L4 (132-140) and L3 (244-265). Considering the positions of these loops relative to the active site, they seem to have no direct involvement in function. Our findings show that the three dimensional structure of an important enzyme in the glycolytic pathway is evolutionarily conserved among eukaryotes and prokaryotes, including gram-positive bacteria.  相似文献   

19.
The complete nucleotide sequence of the small (5149 bp) and cryptic plasmid pS86 from Enterococcus faecalis ssp. faecalis S-86 has been determined. Sequence analysis revealed six putative open reading frames (ORFs) encoding polypeptides of 28.3, 11.5, 8.4, 65.1, 7.3, and 11.96 kDa each. Based on sequence similarity, two cassettes have been identified in pS86: ORF1 codes for the replication initiation protein (Rep); ORF4 codes for a putative mobilization protein that shows similarities to Mob/Pre proteins from plasmids of Gram-positive bacteria. No function could be assigned to the other putative ORFs found. According to our results, pS86 plasmid could use a theta-mode of replication, similar to the recently described theta-type replicons from pUCL287 (Tetragenococcus halophila) and pLA1 or pLA105 (Lactobacillus acidophilus) plasmids. Received: 24 November 1999 / Accepted: 26 April 2000  相似文献   

20.
The structure of rat mast cell protease II at 1.9-A resolution   总被引:14,自引:0,他引:14  
The structure of rat mast cell protease II (RMCP II), a serine protease with chymotrypsin-like primary specificity, has been determined to a nominal resolution of 1.9 A by single isomorphous replacement, molecular replacement, and restrained crystallographic refinement to a final R-factor of 0.191. There are two independent molecules of RMCP II in the asymmetric unit of the crystal. The rms deviation from ideal bond lengths is 0.016 A and from ideal bond angles is 2.7 degrees. The overall structure of RMCP II is extremely similar to that of chymotrypsin, but the largest differences between the two structures are clustered around the active-site region in a manner which suggests that the unusual substrate specificity of RMCP II is due to these changes. Unlike chymotrypsin, RMCP II has a deep cleft around the active site. An insertion of three residues between residues 35 and 41 of chymotrypsin, combined with concerted changes in sequence and a deletion near residue 61, allows residues 35-41 of RMCP II to adopt a conformation not seen in any other serine protease. Additionally, the loss of the disulfide bridge between residues 191 and 220 of chymotrypsin leads to the formation of an additional substrate binding pocket that we propose to interact with the P3 side chain of bound substrate. RMCP II is a member of a homologous subclass of serine proteases that are expressed by mast cells, neutrophils, lymphocytes, and cytotoxic T-cells. Thus, the structure of RMCP II forms a basis for an explanation of the unusual properties of other members of this class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号