首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preincubation of rabbit neutrophils with the synthetic chemotactic factor f-Met-Leu-Phe has been found to diminish the ability of these cells to mobilize calcium upon subsequent stimulation by f-Met-Leu-Phe or by leukotriene B4. The preexposure of the neutrophils to leukotriene B4 on the other hand results in a diminished subsequent response to itself but an unaltered response to f-Met-Leu-Phe. These results demonstrate that deactivation can be observed at the level of calcium mobilization, strengthen the postulated second messenger role of calcium in neutrophils and imply that neutrophil activation by chemotactic factors can bypass the arachidonic acid metabolic pathway.  相似文献   

2.
The possible involvement of membrane-bound calcium in the mechanism of action of leukotriene B4 was examined using the fluorescent chelate probe, chlortetracycline. Leukotriene B4 was found to cause a rapid release of membrane-bound calcium at physiologically relevant concentrations. This effect of leukotriene B4 is stereospecific and its magnitude is decreased upon the transformation of leukotriene B4 into its omega-hydroxy and omega-carboxy metabolites. The pool of calcium affected by leukotriene B4 appears to be the same as that released by other chemotactic factors such as formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Similarly, preincubation with f-Met-Leu-Phe results in a decreased responsiveness of the cells to the addition of leukotriene B4. These results extend further the analogy between the mechanism of action of peptidic and lipid chemotactic factors, and emphasize the central role of the intracellular redistribution of calcium, as inferred and monitored by chlortetracycline fluorescence and steady-state isotopic flux studies, in neutrophil activation.  相似文献   

3.
We have described in det ail the secretory activity of leukotriene B4 toward rabbit neutrophils. Leukotriene B4 rapidly and vigorously degranulates rabbit neutrophils. This activity is stereospecific, cytochalasin B-dependent, and is enhanced by extracellular calcium. Pretreatment with leukotriene B4 deactivates rabbit neutrophils, i.e., cells so treated do not respond to stimulation by an additional bolus of leukotriene B4. In addition, the secretory activity of leukotriene B4 is sharply dependent on the simultaneous presence of cytochalasin B. Rabbit neutrophils therefore exhibit the previously described desensitization to the effect of cytochalasin B. In these and other discussed respects the characteristics of the leukotriene B4-induced degranulation of rabbit neutrophils are strikingly similar to those of the chemotactic factors. These results support the hypothesis that leukotriene B4 mediates, at least in part, the secretory, and possibly other, activities of chemotactic factors.  相似文献   

4.
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds.  相似文献   

5.
Neutrophils which ingest particles (serum-treated zymosan, monosodium urate crystals) or are exposed to calcium ionophore A23187 generate leukotriene B4 (LTB4). Earlier work has shown that cells exposed to colchicine before exposure to monosodium urate crystals produce less LTB4; the formation of 5-HETE is unaffected. To determine whether inhibition by colchicine of LTB4 generation was stimulus-specific and was mediated by microtubule integrity, the effects of colchicine (10 microM, 60 min) on the release of lipoxygenase products from neutrophils exposed to ionophore A23187 (10 microM, 5 min) were examined. In the presence of exogenous arachidonic acid (100 microM, 15 min), colchicine decreased LTB4 to 48% +/- 11.7 of control and 5-HETE to 60.5% +/- 5.7 of control (mean +/- SEM); 15-HETE was also decreased to 61% +/- 10.3 of control. In the absence of exogenous arachidonate, LTB4 was decreased to 22.2% +/- 11.7 of control and 5-HETE to 13% +/- 4.8 of control. Lumicolchicine did not significantly affect formation of 5-HETE or LTB4. However, vinblastine sulfate (20 microM, 60 min), another microtubule-disruptive agent, decreased the formation of both 5-lipoxygenase products. The effects of colchicine and vinblastine were not due to impairment of cell viability because the release of cytoplasmic lactic dehydrogenase was unaffected. Ultrastructural analysis of centriolar microtubules showed that decrements in microtubule numbers of colchicine- and vinblastine-treated cells paralleled decrements in 5-lipoxygenase products. These pharmacologic manipulations suggested that functional microtubules might be required for optimal lipoxygenase activity. Consequently, we prepared neutrophil-derived cytoplasts, devoid of an intact microtubule system. No significant decreases in the 5- or 15-lipoxygenase products were found when cytoplasts were exposed to colchicine in the presence of exogenous arachidonate and A23187. The data show that colchicine inhibits the formation of lipoxygenase products from neutrophils stimulated with A23187, most likely via its effect on microtubules, the integrity of which appears necessary for full expression of 5- and 15-lipoxygenases.  相似文献   

6.
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.  相似文献   

7.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

8.
Leukotriene B4 induced a biphasic change in the cytoplasmic pH of human neutrophils: an initial rapid acidification followed by an alkalinization. The acidification was slightly reduced by the removal of extracellular Ca2+, but the subsequent alkalinization was not. The leukotriene B4-induced alkalinization was dependent on extracellular Na+ and pH, and was inhibited by amiloride and its more potent analogue, 5-(N,N-hexamethylene)amiloride. These characteristics indicate that the cytoplasmic alkalinization is mediated by the Na+-H+ exchange. Oxidation products of leukotriene B4, 20-hydroxyleukotriene B4, 20-carboxyleukotriene B4, and (5S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) also stimulated the Na+-H+ exchange, but higher concentrations were required. Treatment of the cells with pertussis toxin inhibited both phases of the leukotriene B4-induced pHi change, while cholera toxin did not affect the pHi change. The alkalinization induced by leukotriene B4 was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, but was not inhibited by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide which has a less inhibitory effect on protein kinase C. Acidification was not affected by the drugs. These findings suggest that a GTP-binding protein sensitive to pertussis toxin and protein kinase C are involved in the activation of the Na+-H+ exchange stimulated by leukotriene B4.  相似文献   

9.
The tumor co-promoter phorbol 12, myristate 13, acetate (PMA) has previously been shown to stimulate several of the characteristic functions (aggregation, degranulation, and the oxidative burst) of polymorphonuclear leukocytes (neutrophils). We describe here a novel feature of the action of PMA on neutrophils, namely its ability to inhibit the chemotactic factor-induced increased in the enzyme secretion and in the intracellular concentration of free calcium. The inhibition is maximal within 3 min of the addition of PMA and is concentration-dependent (IC50 = 8.5 ng/ml). The site of action of PMA is distal to the binding of the chemotactic factors. PMA inhibits both the release of intracellular calcium and the permeability changes to calcium induced by chemotactic factors, but does not affect the stimulation of the rate of influx of sodium produced by the same agents. The PMA analog 4 alpha-phorbol 12, 13-didecanoate, which lack tumorigenicity and the ability to activate the calcium- and phospholipid-dependent protein kinase (protein kinase C), does not inhibit any of the above fMet-Leu-Phe-stimulated neutrophil functions. The present results thus demonstrate that phorbol esters, either directly or indirectly, possibly through the activation of protein kinase C, inhibit the signal(s) responsible for the stimulated mobilization of calcium in rabbit neutrophils.  相似文献   

10.
11.
12.
Peripheral blood neutrophils and eosinophils from 70 patients and controls were studied for their in vitro chemotactic and chemokinetic responses towards synthetic leukotriene B4 (LTB4), 20-OH-LTB4 and 20-COOH-LTB4. All three factors induced chemotaxis and chemokinesis of cells. 20-OH-LTB4 was always less and 20-COOH-LTB4 even less active than the parent compound. Cells from patients with atopic eczema and T cell lymphoma moved less than cells from normal controls or from patients with psoriasis. In the presence of LTB4, 20-OH-LTB4 and buffer alone, more eosinophils than neutrophils moved to the lower side of the filter, while this did not occur with platelet activating factor as chemoattractant. Studies of neutrophil and eosinophil chemotaxis in the presence of LTB4 should therefore always take into account a high variability of the quantitative response which is donor and disease dependent.  相似文献   

13.
Following its addition to a suspension of rabbit neutrophils, leukotriene B4 is rapidly (less than 1 min) recovered from the cytoskeletal fraction (Triton X-100 insoluble pellet) of these cells. The association of leukotriene B4 with the cytoskeleton can be competed with by leukotriene B4 itself and by 20-OH leukotriene B4 but not by 20-COOH leukotriene B4. In addition, the preincubation of the cells with fMet-Leu-Phe or with phorbol 12-myristate 13-acetate, but not with 4 alpha-phorbol 12,13-didecanoate, results in a greatly decreased association of leukotriene B4 with the cytoskeleton. These results suggest that a specific association between the leukotriene B4 receptors and the cytoskeleton may be involved in signal transduction in the leukotriene B4 stimulated neutrophils.  相似文献   

14.
Normal human neutrophils were stimulated with the yeast cell wall product, zymosan, and examined for two biologic responses, ingestion of particles and production of leukotriene B4 (LTB4), under conditions that were comparable and optimal for the quantitation of each response. Monolayers of adherent neutrophils ingested unopsonized zymosan particles, at particle-to-cell ratios of 12.5:1 to 125:1, in a dose- and time-related manner. At a ratio of 125:1, the percentages of neutrophils ingesting greater than or equal to 1 and greater than or equal to 3 zymosan particles reached plateau levels of 55 +/- 6 and 32 +/- 9% (mean +/- SD, n = 8), respectively, within 30 min. At this same ratio, neutrophils during gravity sedimentation with zymosan particles synthesized LTB4 in a time-dependent manner for at least 45 min. The maximum amount of immunoreactive LTB4 released into supernatants was 3.8 +/- 1.2 ng per 10(6) neutrophils (mean +/- SD, n = 5) and the corresponding total immunoreactive LTB4 was 6.2 +/- 1.9 ng per 10(6) neutrophils. Treatment of 2 x 10(7) suspended neutrophils with 250 micrograms of trypsin for 20 min before concurrent assessment of neutrophil phagocytosis and LTB4 production reduced both of these responses by about 50%. Pretreatment of neutrophils with 800 micrograms/ml of soluble yeast beta-glucan inhibited their ingestion of zymosan by 84% (mean +/- SD, n = 3), with 50% inhibition occurring with 100 micrograms/ml of soluble beta-glucan; 800 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. Pretreatment of neutrophils with 400 micrograms/ml of soluble yeast beta-glucan inhibited neutrophil synthesis of LTB4 by 90%, with 50% occurring with 200 micrograms/ml; 400 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. The presence of 1.25 micrograms/ml of cytochalasin B during incubation with zymosan particles reduced neutrophil phagocytosis from 65 to 6%, and neutrophil synthesis of LTB4 from total levels of 6.0 +/- 0.3 ng/10(6) cells to zero (mean +/- SD, n = 3). Pretreatment with either cytochalasin B or vinblastine did not alter neutrophil generation of LTB4 induced by calcium ionophore. Neutrophils pretreated with vinblastine, at 4 x 10(-6) to 4 x 10(-4) M, and then maintained at one-half these concentrations during incubation with unopsonized zymosan particles exhibited no diminution in particle ingestion, but were markedly reduced in zymosan-induced synthesis of LTB4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
The chemotactic activity of leukotriene B4 (5S, 12R Dihydroxy 6, 14 cis, 8, 10 trans eicosatetraenoic acid) (LTB4) was examined by using a sensitive Boyden-chamber assay. The activity of LTB4 was compared to other biosynthetic stereoisomers: 5S, 12R Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (6-trans LTB4); 5S, 12S Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (12-epi-6-trans LTB4), 5S, 12S DiHETE; the metabolic product 20-Hydroxy LTB4 (20-OH LTB4); methylated LTB4 (Methyl-LTB4), and the related monoHETE 5-HETE and 12-HETE. The compounds were purified by several steps of reverse phase and straight phase HPLC. The LTB4 exhibits measurable chemotactic activity at 10(-9) M with maximal activity at 10(-7) M and an ED50 of 10(-8) M. The LTB4 isomers and monoHETE were less chemotactic than previously reported. The monoHETE (5-HETE and 12-HETE), the isomer 12-epi-6-trans LTB4, and 5S, 12S DiHETE fail to attract neutrophils at levels between 10(-6) and 10(-5) M. If these compounds are chemotactic, then activity is at least four orders of magnitude less than that of LTB4. The isomer 6-trans LTB4 at 10(-6) to 10(-5) M induced chemotaxis with an extrapolated ED50 value of 10(-5) M, indicating that a trans for cis change in configuration at position 6 reduces the chemotactic activity of LTB4 by 1000-fold. Conversely, the metabolic product 20-OH LTB4 is at least as active as the native compound LTB4. Methylation of the carboxyl group of LTB4 reduces its chemotactic activity by two orders of magnitude. These results indicate a high degree of stereospecificity for the LTB4 receptor with strict dependence on hydroxyl group, and triene configuration and considerable dependence on the carboxyl group. Modification at the aliphatic omega end of the LTB4 molecule has a minimal effect on function, suggesting that the hydrophobicity of this portion of the molecule is not important for optimal activity. Furthermore, we propose that metabolic products of LTB4 may be of greater importance than LTB4 as physiologic inflammatory mediators in vivo.  相似文献   

17.
The sonicate of human neutrophils converted leukotriene B4 to a polar product in aerobic condition in the presence of NADPH at a rate comparable to that of the intact cells. NADH could scarcely replace NADPH. The conversion was not observed in anaerobic conditions and was inhibited by carbon monoxide (CO/O2 = 4/1) or by 1 mM p-chlormercuribenzoate, while it was not affected by 1 mM KCN, 5 mM NaN3, 200 micrograms/ml catalase, 100 mM mannitol, and 10 micrograms/ml superoxide dismutase. These observations suggest that the myeloperoxidase-H2O2-halide system and active oxygen species are not involved in the reaction. The activity was observed in the 100,000xg supernatant from the homogenate, in which cytochrome P-450 was not detected.  相似文献   

18.
The subcellular distribution of leukotriene (LT)B4 binding and metabolizing sites was investigated in human neutrophils. Cells were disrupted by nitrogen cavitation and fractionated by Percoll density gradient centrifugation to yield cytoplasm, membranes, azurophilic granules, and specific granules. Only membrane fractions contained high affinity [3H]LTB4 binding sites. Binding of radiolabeled ligand to membranes was rapid, reversible, and saturable; it was blocked by a series of LTB4 analogues at concentrations corresponding to their respective potencies in 1) blocking [3H]LTB4 binding to whole cells and 2) stimulating neutrophil degranulation responses. In contrast, [3H]LTB4 was metabolized by fractions enriched with markers for cytoplasm plus endoplasmic reticulum. The metabolic activity was sedimented by ultracentrifugation, enhanced by NADPH, and inhibited at 4 degrees C. The cell-free system, like intact cells, metabolized [3H]LTB4 to omega-oxidized product rapidly and quantitatively at 37 degrees C but was inactive at 4 degrees C. Whole cells converted radiolabel to 20-hydroxy (approximately 30% of product) and 20-carboxy (approximately 70% of product) derivatives; the cell-free system formed principally 20-hydroxy-[3H]LTB4. These products were less bioactive than LTB4. Nevertheless, metabolism of LTB4 played little role in limiting the cells' response to the ligand: neutrophils completed degranulation and became desensitized to LTB4 within 3-5 min of exposure. Within this time frame, they oxidized less than 30% of the stimulus, and the extracellular fluid of these neutrophil suspensions was fully capable of activating fresh cells. We conclude that neutrophils transmit bioactions of LTB4 via a specific receptor integrally associated with their plasmalemma and/or endoplasmic reticulum. They inactivate the stimulus via a particulate omega-oxidase. At the level of the individual cell, receptor down-regulation, rather than ligand metabolism, appears to limit functional responses such as degranulation.  相似文献   

19.
The syntheses and agonist and binding activities of 5(S)-hydroxy- 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-deoxy LTB4), 5(S), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-epi LTB4), 12(R)-hydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-deoxy LTB4), 5(R), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-epi LTB4), 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5, 12-deoxy LTB4) are described. These leukotriene B4 analogs were all able to aggregate rat leukocytes and compete with [3H]-leukotriene B4 for binding to rat and human leukocyte leukotriene B4 receptors with varying efficacy. The analog in which the 12-hydroxyl group was removed was severely reduced both in agonist action (aggregation) and binding. The epimeric 12-hydroxyl analog demonstrated better agonist and binding properties than the analog without a hydroxyl at this position. In contrast, in the case of the 5-hydroxyl the epimeric hydroxyl analog had greatly reduced agonist and binding activities while the 5-deoxy analog demonstrated potency only several fold less than leukotriene B4 itself. The dideoxy leukotriene B4 analog was more than a thousand fold less active than leukotriene B4 as an agonist and in binding to the leukotriene B4 receptor. These results show that binding to the leukocyte leukotriene B4 receptor requires a hydroxyl group at the 12 position in either stereochemical orientation but that the presence of a hydroxyl at the 5 position is less important. However, the epimeric C5 leukotriene B4 analog clearly interacts unfavourably with the binding site of the leukotriene B4 receptor.  相似文献   

20.
The chemotactic factors f-Met-Leu-Phe, arachidonic acid and leukotriene B4 induce a rapid stimulation of both Ca2+ and Na+ influx in rabbit neutrophils. In the three cases the stimulation is rapid and the effects are not additive. Furthermore in all cases the stimulation of Na-influx but not of Ca-uptake is inhibited by the potassium-sparing diuretic amiloride. Preincubation with high concentrations of the chemotactic factor f-Met-Leu-Phe followed by washing of rabbit neutrophils reduces significantly the stimulation of calcium uptake induced by arachidonic acid, leukotriene B4 and f-Met-Leu-Phe. These results strongly suggest that the exogenous addition of arachidonic acid or of leukotriene B4 leads to the activation of the same permeation pathways as do better defined chemotactic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号