首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of propofol on neuronal activity in the rostral ventrolateral medulla (RVLM) is not well established. Therefore, we performed extracellular recording on neurons of the RVLM to investigate neuronal activity before and after administration of intravenous propofol. The mean systemic arterial pressure (MSAP), heart rate and integrated neuronal firing rate (INFR) in the RVLM were continuously recorded in anesthetized cats before and after intravenous injection of 2 mg/kg propofol or supplemental injections of 1, 2 and 4 mg/kg propofol that were given respectively. Additionally, we compared the MSAP, heart rate (HR), and INFR in the RVLM following intravenous injection of 2 mg/kg propofol or 12.5 microg/kg nitroprusside. Neuronal firing was dose-dependently and reversibly inhibited after the supplemental doses of 1, 2 and 4 mg/kg propofol. The control INFR was 14.2 +/- 9.9 Hz, and this decreased to 12.1 +/- 9.4 Hz after the first dose of propofol (P = 0.085 vs. control), and further decreased to 9.3 +/- 7.7 Hz (P = 0.001 vs. control) and 7.5 +/- 7.7 Hz (P < 0.001 vs. control) after the second and third doses of propofol, respectively. Besides, SAP and HR were dose-dependently decreased by propofol as well. However, the effects of propofol and nitroprusside on neuronal activity in the RVLM differed. Propofol inhibited neuronal firing, whereas nitroprusside activated neuronal firing. In conclusion, propofol may dose-dependently inhibit spontaneous neuronal activity and the baroreflex in the RVLM.  相似文献   

3.
Wang WZ  Rong WF  Wang CM  Wang JW  Wang JJ  Yuan WJ 《生理学报》2001,53(4):270-274
实验用多管微电极细胞外记录氨基甲酸乙酯麻醉的SD大鼠延髓头端腹外侧区(RVLM)神经元的活动,用电刺激主动脉神经和静脉注射苯肾上腺素激活压力感受器反射等方法鉴定心血管神经元,在RVLM内共记录到145个自发放电的神经元,其中33个为心血管神经元,31个为伤害调制性神经元,81个为未知功能神经元。33个心血管神经元微电泳硫酸皮质酮(CORT)后,25个(76%)神经元放电迅速加快,8个(24%)自发放电没有变化。伤害刺激引起兴奋的31个伤害调制性神经元,微电泳CORT后19个(64%)神经元放电抑制,而2个(6%)兴奋,其余10个(30%)没有反应,功能不明的81个神经元在微电泳CORT后,32个(40%0兴奋,5个(6%)抑制,44个(54%)没有反应,以上结果证明CORT可能通过非基因组机制快速影响RVLM神经元的活动,提示在应激等情况下CORT的快速作用机制可能在心血管和抗伤害等活动整合中具有一定意义。  相似文献   

4.
5.
Fan MX  Li X  Wang J  Cao YX  Shen LL  Zhu DN 《生理学报》2006,58(3):193-200
采用多管微电泳结合细胞外记录的方法研究了肾上腺髓质素(adrenomedullin,ADM)对大鼠延髓头端腹外侧区(rostral ventrolateral medulla,rVLM)压力反射敏感性神经元电活动的作用及其可能机制.结果显示在29个rVLM压力反射敏感神经元中,20个神经元在30、60和90 nA的电流微电泳大鼠ADM(rADM)过程中,放电频率由(10.8±2.7)spikes/s分别增加到(14.6±3.6)、(19.8±4.7)和(31.9±6.4)spikes/s(P<0.05,n=20).微电泳rADM特异性受体阻断剂人ADM(human ADM,hADM)(22-52)可明显减小神经元放电频率的增加幅度,比正常放电频率仅增加15.4%[(11.4±2.5)sipkes/s,P<0.05,n=10],而降钙素基因相关肽1(CGRP1)受体阻断剂hCGRP(8-37)对rADM兴奋性神经元电活动影响较小.在另外23个神经元中,10个神经元的放电频率在10、20和40 nA电流微电泳神经型NOS(nNOS)抑制剂7-NiNa过程中放电减少,由正常的(10.1±3.5)spikes/s分别减少为(7.5±2.5)、(5.3±2.1)和(3.1±1.4)spikes/s(P<0.05,n=10).在微电泳7-NiNa过程中同时微电泳rADM,则rADM增加神经元放电频率的效应减弱,增加幅度为基础水平的17%[(6.2±1.9)spikes/s].8个神经元在10、20和40 nA电流微电泳诱导型NOS抑制剂(iNOS)aminoguanidine(AG)过程中放电频率由(11.5±5.1)spikes/s增加到(17.8±5.6)、(22.5±6.3)和(29.1±6.4)spikes/s(P<0.05,n=8),rADM与AG同时微电泳时,AG对rADM本身增加神经元放电的效应无明显影响.上述结果提示,rADM在rVLM可通过其特异性受体或来源于nNOS的NO作用于压力反射敏感神经元,使其活动增强而发挥调节心血管活动的作用.  相似文献   

6.
The role of ANG type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM) in the maintenance of sympathetic vasomotor tone in normotensive animals is unclear. In this study, we tested the hypothesis that AT1 receptors make a significant contribution to the tonic activity of presympathetic neurons in the RVLM of normotensive rats under conditions where the excitatory input to these neurons is enhanced, such as during systemic hypoxia. In urethane-anesthetized rats, microinjections of the AT1 receptor antagonist candesartan in the RVLM during moderate hypoxia unexpectedly resulted in substantial increases in arterial pressure and renal sympathetic nerve activity (RSNA), whereas under normoxic conditions the same dose resulted in no significant change in arterial pressure and RSNA. Under hypoxic conditions, and after microinjection of the GABA(A) receptor antagonist bicuculline in the RVLM, subsequent microinjection of candesartan in the RVLM resulted in a significant decrease in RSNA. In control experiments, bilateral microinjections in the RVLM of the compound [Sar1,Thr8]ANG II (sarthran), which decreases sympathetic vasomotor activity via a mechanism that is independent of AT1 receptors, significantly reduced arterial pressure and RSNA under both normoxic and hypoxic conditions. The results indicate that, at least under some conditions, endogenous ANG II has a tonic sympathoinhibitory effect in the RVLM, which is dependent on GABA receptors. We suggest that the net effect of endogenous ANG II in this region depends on the balance of both tonic excitatory and inhibitory actions on presympathetic neurons and that this balance is altered in different physiological or pathophysiological conditions.  相似文献   

7.
Shen LL  Peng YJ  Wu GQ  Cao YX  Li P 《生理学报》1999,(2):168-174
本文分析了大鼠延头端腹外侧区(RVLM)神经元单位活动与心血管活动的相干性,观察了RVLM区神经元电 对电刺激中脑防御反应区的诱发反应,以及对压力感受性反射的反应,并用FFT对RVLM区神经元自发单位放电和血压波进行频域的相干性分析,以判断是具有心节律。还分析了RVLM区单位放电变异性与心率变异性的相干性。结果显示:RVLM区大多数神经元对电刺激中脑防御反应区呈兴奋反应(67%),70%神经元放电  相似文献   

8.
In acute experiments on anesthetized cats data are obtained attesting to the fact that injections of GABA (0.5–50 µmoles/liter) into neuronal structures of the caudal ventrolateral medulla (CVLM) are accompanied by the development of hypertensive reactions caused by an increase in spontaneous activity in the sympathetic fibers of the renal and inferior cardiac nerves. An asymmetry is discovered in the realization of the inhibitory chrono- and inotropic influences on the heart emanating from the region investigated. Blocking of the GABA receptors with bicuculline (0.2–5.0 µmoles/liter) causes a sharp drop in the level of the systemic arterial pressure, a decrease in the strength and frequency of cardiac contractions, and a falling-off of the background activity in the peripheral symphathetic nerves. The findings suggest that the sympathoinhibitory CVLM neurons are under the constant inhibitory control of the GABA-ergic neurons.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 698–703, November–December, 1991.  相似文献   

9.
Differences in the location of putative inhibitory (F-type) synapses were revealed during research into the ultrastructural organization of the chemically sensitive cat ventrolateral medulla (VLM). These synapses are made up of axonal terminals filled with flattened synaptic vesicles with the long axis measuring 60–80 nm. They are mainly located in the caudal portion of the test area, while S-type synapses with spherical electron-transparent synaptic vesicals, with a mean diameter of 50 nm, are distributed fairly evenly within the confines of the test area. It is postulated that neuronal structure of the chemically sensitive cat VLM have a different functional significance in the exerting of central neurogenous control over circulatory function.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 300–305, May–June, 1989.  相似文献   

10.
In urethane/α-chloralose anesthetized rats, cold exposure increased brown adipose tissue sympathetic nerve activity (BAT SNA: +699 ± 104% control). Intravenous administration of 2-deoxy-D-glucose (2-DG; 200 mg·ml(-1)·kg(-1)) reversed the cold-evoked activation of BAT SNA (nadir: 139 ± 36% of control) and decreased BAT temperature (-1.1 ± 0.2°C), expired CO(2) (-0.4 ± 0.1%), and core temperature (-0.5 ± 0.0). Similarly, unilateral nanoinjection of the glucoprivic agent 5-thioglucose (5-TG; 12 μg/100 nl) in the ventrolateral medulla (VLM) completely reversed the cold-evoked increase in BAT SNA (nadir: 104 ± 7% of control), and decreased T(BAT) (-1.4 ± 0.3°C), expired CO(2) (-0.2 ± 0.0%), and heart rate (-35 ± 10 beats/min). The percentage of rostral raphé pallidus (RPa)-projecting neurons in the dorsal hypothalamic area/dorsomedial hypothalamus that expressed Fos in response to cold exposure (ambient temperature: 4-10°C) did not differ between saline (28 ± 6%) and 2-DG (30 ± 5%) pretreated rats, whereas the percentage of spinally projecting neurons in the RPa/raphé magnus that expressed Fos in response to cold exposure was lower in 2-DG- compared with saline-pretreated rats (22 ± 6% vs. 42 ± 5%, respectively). The increases in BAT SNA evoked by nanoinjection of bicuculline in the RPa or by transection of the neuraxis at the pontomedullary border were resistant to inhibition by glucoprivation. These results suggest that neurons within the VLM play a role in the glucoprivic inhibition of BAT SNA and metabolism, that this inhibition requires neural structures rostral to the pontomedullary border, and that this inhibition is mediated by a GABAergic input to the RPa.  相似文献   

11.
In this paper we review our recent work in the rabbit and cat on the role of the rostral ventrolateral medulla in cardiovascular regulation. Microinjection of neuroexcitatory amino acids into a highly circumscribed region, located just ventral to the retrofacial nucleus at the level of the rostral part of the inferior olive, leads to an increase in blood pressure, owing to sympathetic vasoconstriction. Bilateral destruction of this region, which we have termed the subretrofacial nucleus, leads to a profound fall in blood pressure. Anatomical studies show that the subretrofacial nucleus contains a compact group of bulbospinal neurones that project to sympathetic preganglionic nuclei in the thoracolumbar spinal cord. Single-unit recording studies have shown that these bulbospinal neurons are spontaneously active and are powerfully inhibited by baroreceptor inputs. These observations indicate that the subretrofacial bulbospinal cells are sympathoexcitatory and play a major role in the tonic and phasic control of the cardiovascular system. Some important unresolved questions regarding the subretrofacial neurones will be discussed. (i) Are they functionally homogenous, or are they viscerotopically organized with respect to particular end organs? (ii) What are their afferent inputs? (iii) What are their histochemical properties? Specifically, are they part of the group of adrenaline-synthesizing cells, or alternatively, substance P cells?  相似文献   

12.
Both optimum cardiac operating regime and the state of vascular tonus depend largely on the activity of chemically sensitive structures of the ventrolateral medulla.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 717–735, November–December, 1992.  相似文献   

13.
Alheid  G. F.  Gray  P. A.  Jiang  M. C.  Feldman  J. L.  McCrimmon  D. R. 《Brain Cell Biology》2002,31(8-9):693-717
A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 μm2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 μm2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.  相似文献   

14.
Local injection of substance P (SP) into the ventral portion of the nucleus gigantocellularis, nucleus reticularis lateralis, and nucleus retrofacialis of the ventrolateral medulla oblongata (VLM) or direct application on the ventral surface of the medulla oblongata caused marked stimulation of tidal volume (VT) and/or minute ventilation (VE). The ventilatory response to hypoxia was significantly blunted after SP in the VLM but not in the dorsal medulla oblongata (DM) (nucleus tractus solitarius). The SP antagonist [D-Pro2,D-Trp7,9]SP almost completely inhibited this response when applied locally to a wide area of the superficial layer of the VLM but not of the DM. Unilateral or bilateral application of 0.3-1.5 nmol of the SP antagonist in the VLM (corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment) markedly attenuated the response to a 5% CO2 inhalation. The inhibition of the CO2 response was seen after [D-Pro2,D-Trp7,9]SP in the rostral areas of the medulla oblongata corresponding to the corpus trapezoideum and the caudal region extending from the rootlets of the nucleus hypoglossus to the first cervical segment of the cervical cord. Electric somatosensory-induced ventilatory stimulation could be depressed by approximately 70% by [D-Pro2,D-Trp7,9]SP locally applied on the surface of the VLM. We conclude that SP is involved in the hypoxic, hypercapnic, and somatosensory ventilatory responses in the rat. However, these respiratory reflexes are mediated via different neuronal pools in the medulla oblongata, mainly the VLM.  相似文献   

15.
Exercise training (ExTr) has been associated with blunted activation of the sympathetic nervous system in several animal models and in some human studies. Although these data are consistent with the hypothesis that ExTr reduces the incidence of cardiovascular diseases via reduced sympathoexcitation, the mechanisms are unknown. The rostral ventrolateral medulla (RVLM) is important in control of sympathetic nervous system activity in both physiological and pathophysiological states. The purpose of the present study was to test the hypothesis that ExTr results in reduced sympathoexcitation mediated at the level of the RVLM. Male Sprague-Dawley rats were treadmill trained or remained sedentary for 8-10 wk. RVLM microinjections were performed under Inactin anesthesia while mean arterial pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) were recorded. Bilateral microinjections of the GABA(A) antagonist bicuculline (5 mM, 90 nl) into the RVLM increased LSNA in sedentary animals (169 +/- 33%), which was blunted in ExTr animals (100 +/- 22%, P < 0.05). Activation of the RVLM with unilateral microinjections of glutamate (10 mM, 30 nl) increased LSNA in sedentary animals (76 +/- 13%), which was also attenuated by training (26 +/- 2%, P < 0.05). Bilateral microinjections of the ionotropic glutamate receptor antagonist kynurenate (40 mM, 90 nl) produced small increases in mean arterial pressure and LSNA that were similar between groups. Results suggest that ExTr may reduce increases in LSNA due to reduced activation of the RVLM. Conversely, we speculate that the relatively enhanced activation of LSNA in sedentary animals may be related to the increased incidence of cardiovascular disease associated with a sedentary lifestyle.  相似文献   

16.
We investigated the responsesof systemic arterial pressure and vertebral sympathetic nerve activityto glutamate microinjections (0.1 M, 70 nl) in the dorsomedial (DM) andthe rostral ventrolateral medulla (RVLM) before hypoxia and afterreoxygenation (posthypoxia) after various degrees of hypoxia inanesthetized cats. Hypoxia was produced by ventilating 5%O2 and 95% N2 for different durations (hypoxiaI-III). In intact cats, the glutamate-induced systemic arterialpressure and vertebral nerve activity responses of the DM weredepressed after all degrees of hypoxia. Posthypoxic depression in theRVLM, however, was not observed until hypoxia II and III. Precolliculardecerebration prevented depression in the RVLM, but, for the DM, it waseffective only for hypoxia I. Baro- and chemoreceptor denervationabolished all posthypoxic depression in both the DM and the RVLM.Pressor responses to tyramine (100-400 µg/kg iv) remainedunchanged after all degrees of hypoxia. These results suggest that theDM is more susceptible to hypoxia than the RVLM. The peripheral baro-and chemoreceptors and the suprapontine structures apparently play animportant role in posthypoxic depression. Moreover, the depression isnot due to the postganglionic norepinephrine depletion.

  相似文献   

17.
In acute experiments on cats, the effects of injections of nitric oxide (NO) donors and an inhibitor of its synthesis into the sympathoexcitatory neuronal structures in the ventrolateral medulla (VLM) were studied to examine their effects on the peripheral mechanisms of the cardiovascular control. Unilateral injections of NO donors, nitroglycerine (1.3–5.2 nmol) or sodium nitroprusside (1.1–4.6 nmol) into the sites of the sympathoexcitatory neurons residing in the VLM induced the lowering of the systemic arterial pressure (SAP) in a dose-depended fashion. Two types of the hypotensive responses have been distinguished. In the first type responses, lowering of the SAP level was mainly due to a decrease in the peripheral vascular resistance (PVR), while the heart rate (HR) and stroke volume (SV) were only slightly reduced. In the second type responses, the drop in SAP level resulted mainly from a decrease in the HR and myocardial contractivity. These effects were induced by the limitation of the descending excitatory influences to the heart and vessels from the VLM sympathoexcitatory systems. An increase in the NO concentrations in the neuronal structures located 2.5–4.5 mm caudally to the trapezold bodies resulted in the first type responses, while that in the sites immediately adjacent to the caudal sympathoinhibitory area (0.5–1.5 mm rostrally to the XIIth cranial nerve roots) was associated with the second type of reactions. Stimulation of the endogenous NO release from the neurons after injections of L-arginine induced the same cardiovascular shifts as exogenic NO did, and attenuation of NO synthesis following injections of NO antagonist L-NMMA into the VLM neuronal structures evoked hemodynamic shifts of a reverse direction. Injections of NO donors inhibited the reflex responses induced by the activation of the carotid sinus receptors. Our data give further evidence for NO involvement in the inhibitory control of the cardiac activity and vascular tone through those VLM sympatoexcitatory neurons, which are involved in the system of central neurogenic cardiovascular control and the activity of which prevent the development of hypertension.Neirofiziologiya/Neurophysiology, Vol. 28, No. 2/3, pp. 111–120, March–June, 1996.  相似文献   

18.
Although the role played by the caudal ventrolateral medulla in the regulation of the cardiovascular system has been extensively investigated, little is known about the role played by this area in the regulation of airway caliber. Therefore, in alpha-chloralose-anesthetized dogs, we used both electrical and chemical means to stimulate the caudal ventrolateral medulla while we monitored changes in total lung resistance breath by breath. We found that electrical stimulation (25 microA) of 26 sites in this area significantly decreased total lung resistance from 7.1 +/- 0.4 to 5.7 +/- 0.3 cmH2O.1-1.s (P less than 0.001). The bronchodilation evoked by electrical stimulation was unaffected by beta-adrenergic blockade but was abolished by cholinergic blockade. In addition, chemical stimulation of seven sites in the caudal ventrolateral medulla with microinjections of DL-homocysteic acid (0.2 M; 66 nl), which stimulates cell bodies but not fibers of passage, also decreased total lung resistance from 8.3 +/- 1.1 to 6.5 +/- 0.8 cmH2O.l-1.s (P less than 0.01). In contrast, microinjections of DL-homocysteic acid into the nucleus ambiguus (n = 6) increased total lung resistance from 7.5 +/- 0.5 to 9.2 +/- 0.4 cmH2O.l-1.s (P less than 0.05). We conclude that the caudal ventrolateral medulla contains a pool of cell bodies whose excitation causes bronchodilation by withdrawing cholinergic input to airway smooth muscle.  相似文献   

19.
Although it is well established that bulbospinal neurons located in the rostral ventrolateral medulla (RVLM) play a pivotal role in regulating sympathetic nerve activity and blood pressure, virtually all neurophysiological studies of this region have been conducted in anesthetized or decerebrate animals. In the present study, we used time- and frequency-domain analyses to characterize the naturally occurring discharges of RVLM neurons in conscious cats. Specifically, we compared their activity to fluctuations in carotid artery blood flow to identify neurons with cardiac-related (CR) activity; we then considered whether neurons with CR activity also had a higher-frequency rhythmic firing pattern. In addition, we ascertained whether the surgical removal of vestibular inputs altered the rhythmic discharge properties of RVLM neurons. Less than 10% of RVLM neurons expressed CR activity, although the likelihood of observing a neuron with CR activity in the RVLM varied between recording sessions, even when tracking occurred in a very limited area and was higher after vestibular inputs were surgically removed. Either a 10-Hz or a 20- to 30-Hz rhythmic discharge pattern coexisted with the CR discharges in some of the RVLM neurons. Additionally, the firing rate of RVLM neurons, including those with CR activity, decreased after vestibular lesions. These findings raise the prospect that RVLM neurons may or may not express rhythmic firing patterns at a particular time due to a variety of influences, including descending projections from higher brain centers and sensory inputs, such as those from the vestibular system.  相似文献   

20.
Cardiovascular effects of angiotensin-(1-12) [ANG-(1-12)] were studied in the medial nucleus of the tractus solitarius (mNTS) in anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of ANG-(1-12) (0.06 mM) into the mNTS elicited maximum decreases in mean arterial pressure (MAP; 34 ± 5.8 mmHg) and heart rate (HR; 39 ± 3.7 beats/min). Bilateral vagotomy abolished ANG-(1-12)-induced bradycardia. Efferent greater splanchnic nerve activity was decreased by microinjections of ANG-(1-12) into the mNTS. Blockade of ANG type 1 receptors (AT(1)Rs; using ZD-7155 or L-158,809), but not ANG type 2 receptors (AT(2)Rs; using PD-123319), significantly attenuated ANG-(1-12)-induced cardiovascular responses. Simultaneous inhibition of both angiotensin-converting enzyme (ACE; using captopril) and chymase (using chymostatin) completely blocked the effects of ANG-(1-12). Microinjections of A-779 [ANG-(1-7) antagonist] did not attenuate ANG-(1-12)-induced responses. Pressure ejection of ANG-(1-12) (0.06 mM, 2 nl) caused excitation of barosensitive mNTS neurons, which was blocked by prior application of the AT(1)R antagonist. ANG-(1-12)-induced excitation of mNTS neurons was also blocked by prior sequential applications of captopril and chymostatin. These results indicate that 1) microinjections of ANG-(1-12) into the mNTS elicited depressor and bradycardic responses by exciting barosensitive mNTS neurons; 2) the decreases in MAP and HR were mediated via sympathetic and vagus nerves, respectively; 3) AT(1)Rs, but not AT(2)Rs, mediated these actions of ANG-(1-12); 4) the responses were mediated via the conversion of ANG-(1-12) to ANG II and both ACE and chymase were involved in this conversion; and 5) ANG-(1-7) was not one of the metabolites of ANG-(1-12) in the mNTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号