首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Introduction  

The avascular nature of the human intervertebral disc (IVD) is thought to play a major role in disc pathophysiology by limiting nutrient supply to resident IVD cells. In the human IVD, the central IVD cells at maturity are normally chondrocytic in phenotype. However, abnormal cell phenotypes have been associated with degenerative disc diseases, including cell proliferation and cluster formation, cell death, stellate morphologies, and cell senescence. Therefore, we have examined the relative influence of possible blood-borne factors on the growth characteristics of IVD cells in vitro.  相似文献   

2.
IntroductionNutrient deprivation is a likely contributor to intervertebral disc (IVD) degeneration. Silent mating type information regulator 2 homolog 1 (SIRT1) protects cells against limited nutrition by modulation of apoptosis and autophagy. However, little evidence exists regarding the extent to which SIRT1 affects IVD cells. Therefore, we conducted an in vitro study using human IVD nucleus pulposus (NP) cells.MethodsThirty-two IVD specimens were obtained from patients who underwent surgical intervention and were categorized based on Pfirrmann IVD degeneration grades. Cells were isolated from the NP and cultured in the presence of recombinant human SIRT1 (rhSIRT1) under different serum conditions, including 10 % (v/v) fetal bovine serum (FBS) as normal nutrition (N) and 1 % (v/v) FBS as low nutrition (LN). 3-Methyladenine (3-MA) was used to inhibit autophagy. Autophagic activity was assessed by measuring the absorbance of monodansylcadaverine and immunostaining and Western blotting for light chain 3 and p62/SQSTM1. Apoptosis and pathway analyses were performed by flow cytometry and Western blotting.ResultsCells cultured under LN conditions decreased in number and exhibited enhanced autophagy compared with the N condition. Medium supplementation with rhSIRT1 inhibited this decrease in cell number and induced an additional increase in autophagic activity (P < 0.05), whereas the combined use of rhSIRT1 and 3-MA resulted in drastic decreases in cell number and autophagy (P < 0.05). The incidence of apoptotic cell death increased under the LN condition, which was decreased by rhSIRT1 (P < 0.05) but increased further by a combination of rhSIRT1 and 3-MA (P < 0.05). Under LN conditions, NP cells showed a decrease in antiapoptotic Bcl-2 and an increase in proapoptotic Bax, cleaved caspase 3, and cleaved caspase 9, indicating apoptosis induction via the mitochondrial pathway. These changes were suppressed by rhSIRT1 but elevated further by rhSIRT1 with 3-MA, suggesting an effect of rhSIRT1-induced autophagy on apoptosis inhibition. Furthermore, the observed autophagy and apoptosis were more remarkable in cells from IVDs of Pfirrmann grade IV than in those from IVDs of Pfirrmann grade II.ConclusionsSIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human IVD NP cells, suggesting that rhSIRT1 may be a potent treatment agent for human degenerative IVD disease.  相似文献   

3.

Introduction  

Earlier work indicates that the cholesterol-lowering drug, simvastatin, is anabolic to chondrogenic expression of rat intervertebral disc (IVD) cells, which suggests a potential role for simvastatin in IVD regeneration. In this study, we expand on our earlier work to test the effectiveness of simvastatin on disc degeneration utilizing a rat tail disc degeneration model.  相似文献   

4.

Background

The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways.

Methodology/Principal Findings

In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death.

Conclusion/Significance

Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.  相似文献   

5.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

6.
Parkinson's disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinson's disease. We previously reported that in differentiated SH‐SY5Y cells, rotenone‐induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10–100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial‐specific lysosomal degradation pathway may be activated. Up‐regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3‐methyladenine exacerbated cell death. Interestingly, while 3‐methyladenine exacerbated the rotenone‐dependent effects on bioenergetics, rapamycin did not prevent rotenone‐induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor. Exposure to the neurotoxin rotenone is a risk factor for Parkinson's disease. We tested the hypothesis that autophagy is protective against rotenone toxicity in primary neurons. Exposure to nanomolar concentrations of rotenone caused immediate mitochondrial dysfunction, associated with a suppression of macroautophagy. However, mitophagy occurred that was independent of LC3II accumulation, and the surviving neurons exhibited adaptations to their cellular bioenergetic profiles. Cotreatment with the autophagy enhancer rapamycin was protective, whereas further inhibition of autophagy with 3‐methyladenine (3‐MA) exacerbated cell death, resulting in additional bioenergetic adaptations in the surviving neurons.

  相似文献   


7.

Introduction  

Intervertebral disc (IVD) degeneration is considered a major underlying factor in the pathogenesis of chronic low back pain. Although the healthy IVD is both avascular and aneural, during degeneration there is ingrowth of nociceptive nerve fibres and blood vessels into proximal regions of the IVD, which may contribute to the pain. The mechanisms underlying neural ingrowth are, however, not fully understood. Semaphorin 3A (sema3A) is an axonal guidance molecule with the ability to repel nerves seeking their synaptic target. This study aimed to identify whether members of the Class 3 semaphorins were expressed by chondrocyte-like cells of the IVD addressing the hypothesis that they may play a role in repelling axons surrounding the healthy disc, thus maintaining its aneural condition.  相似文献   

8.

Introduction  

Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. The goal of this study was to use soluble factors from NCs in alginate and NCs in their native tissue to differentiate human MSCs to a young nucleus pulposus (NP) phenotype.  相似文献   

9.
The purine-derived analogs, roscovitine and purvalanol are selective synthetic inhibitors of cyclin-dependent kinases (CDKs) induced cell cycle arrest and lead to apoptotic cell death in various cancer cells. Although a number of studies investigated the molecular mechanism of each CDK inhibitor on apoptotic cell death mechanism with their therapeutic potential, their regulatory role on autophagy is not clarified yet. In this paper, our aim was to investigate molecular mechanism of CDK inhibitors on autophagy and apoptosis in wild type (wt) and Bax deficient HCT 116 cells. Exposure of HCT 116 wt and Bax−/− cells to roscovitine or purvalanol for 24 h decreased cell viability in dose-dependent manner. However, Bax deficient HCT 116 cells were found more resistant against purvalanol treatment compared to wt cells. We also established that both CDK inhibitors induced apoptosis through activating mitochondria-mediated pathway in caspase-dependent manner regardless of Bax expression in HCT 116 colon cancer cells. Concomitantly, we determined that purvalanol was also effective on autophagy in HCT 116 colon cancer cells. Inhibition of autophagy by 3-MA treatment enhanced the purvalanol induced apoptotic cell death in HCT 116 Bax−/− cells. Our results revealed that mechanistic action of each CDK inhibitor on cell death mechanism differs. While purvalanol treatment activated apoptosis and autophagy in HCT 116 cells, roscovitine was only effective on caspase-dependent apoptotic pathway. Another important difference between two CDK inhibitors, although roscovitine treatment overcame Bax-mediated drug resistance in HCT 116 cells, purvalanol did not exert same effect.  相似文献   

10.

Background

Autophagy can either be protective and confer survival to stressed cells, or it can contribute to cell death. The antimitotic drug 2-ethyl-3-O-sulpamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) is an in silico-designed 17-β-estradiol analogue that induces both autophagy and apoptosis in cancer cells. The aim of the study was to determine the role of autophagy in ESE-15-ol-exposed human adenocarcinoma breast cancer cells; knowledge that will contribute to future clinical applications of this novel antimitotic compound. By inhibiting autophagy and determining the cytotoxic effects of ESE-15-ol-exposure, deductions could be made as to whether the process may confer resistance to the drug, or alternatively, contribute to the cell death process.

Methods and results

Spectophometrical analysis via crystal violet staining was used to perform cytotoxicity studies. Morphology studies were done using microscopic techniques namely polarization-optical transmitted light differential interference light microscopy, fluorescent microscopy using monodansylcadaverine staining and transmission electron microscopy. Flow cytometry was used to quantify the autophagy inhibition and assess cell viability. Results obtained indicated that 3-methyladenine inhibited autophagy and increased cell survival in both MCF-7 and MDA-MB-231 cell lines.

Conclusion

This in vitro study inferred that autophagy inhibition with 3-methyladenine does not confer increased effectiveness of ESE-15-ol in inducing cell death. Thus it may be concluded that the autophagic process induced by ESE-15-ol exposure in MCF-7 and MDA-MB-231 cells plays a more significant role in cell death than conferring survival.
  相似文献   

11.

Introduction  

Nucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.  相似文献   

12.

Aims

Ardipusilloside I (ADS-I), a triterpenoid saponin isolated from Ardisia pusilla A.DC (Myrsinaceae), has been recently tested for cancer treatment including brain cancer. However, the mechanism of its action remains elusive. The present study was to investigate the role of autophagy activation in the anti-tumor activities of ADS-I in human glioma cells.

Main methods

The tetrazolium dye (MTT) colorimetric assay was used for the measurement of cell proliferation in cultured glioma cells, transmission electron microscopy (TEM) for the examination of autophagic activity, flow cytometric analysis for the determination of cell cycle and apoptotic cells, and immunocytochemistry and Western blot for protein expression of microtubule-associated protein light-chain 3 (LC3) and Beclin 1.

Key findings

ADS-I significantly inhibited the proliferation of both U373 and T98G glioma cells in cultures in a dose-dependent manner. The cytotoxic activity of ADS-I against glioma cell growth was associated not only with the induction of cell cycle arrest at G2/M phase and cell apoptosis in flow cytometric analysis, but also with the activation of autophagy, indicated by the formation of autophagosomes and up-regulated expression of both autophagic protein Beclin 1 and LC3 in glioma cells. Additionally, the treatment with chloroquine, an autophagy inhibitor, reduced ADS-1-mediated cell death.

Significance

These data suggest that the anti-proliferative activity of ADS-I in human glioma cells is associated with the activation of autophagy in addition to cell cycle arrest and apoptosis, and the antagonistic effect of chloroquine suggests an important role of autophagy in ADS-I-mediated cell death against tumor growth.  相似文献   

13.
14.

Background  

In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria.  相似文献   

15.

Background  

At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs) death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis.  相似文献   

16.

Introduction  

The decreased disc height characteristic of intervertebral disc (IVD) degeneration has often been linked to low back pain, and thus regeneration strategies aimed at restoring the disc extracellular matrix and ultimately disc height have been proposed as potential treatments for IVD degeneration. One such therapy under investigation by a number of groups worldwide is the use of autologous mesenchymal stem cells (MSCs) to aid in the regeneration of the IVD extracellular matrix. To date, however, the optimum method of application of these cells for regeneration strategies for the IVD is unclear, and few studies have investigated the direct injection of MSCs alone into IVD tissues. In the present article, we investigated the survival and phenotype of human MSCs, sourced from aged individuals, following injection into nucleus pulposus (NP) tissue explant cultures.  相似文献   

17.
BackgroundThe outcome of triple negative breast cancer is still poor and requires improvement with better therapy options. Autophagy has recently been shown to play a role in anticancer drug resistance. Therefore, we investigated if the effectiveness of doxorubicin was augmented by the inhibition of autophagy.MethodsMDA-MB-231 was used as a model cell line for triple negative breast cancer and 3-methyladenine was used as an inhibitor of autophagy. Cells were treated with 0.46–1.84 μM doxorubicin and 2.5–10 μM 3-methyladenine for 48 h. Cell death mode was examined with M30 and M65 ELISA assays. ROS level and LDH activity was examined and the cellular acidic compartment of cells was monitored by acridine orange staining. The expression of various autophagy and apoptosis related proteins/genes were evaluated with Western blotting and RT-qPCR respectively.ResultsSynergism was observed between the compounds (CI value < 1.0). RT-qPCR analysis revealed that the combination resulted in a down-regulation of autophagy-related genes. Moreover, the combination resulted in a different cell death modality, upregulating necroptosis-related genes. This suggests that the mode of cell death may switch from apoptosis to necroptosis, which is a more severe form of cell death, when autophagy is inhibited. These results were further confirmed at protein level by Western blotting.ConclusionInhibition of autophagy seems to sensitize triple negative breast cancer cells to doxorubicin, warranting further in vivo studies for the proof of this concept.General significanceAutophagy has a key role in drug resistance in MDA-MB-231 cells. Therefore combinatorial approaches may effectively overcome resistance.  相似文献   

18.

Introduction  

Loss of intervertebral disc (IVD) matrix and ultimately disc height as a result of 'degeneration' has been implicated as a major cause of low back pain (LBP). The use of anabolic growth factors as therapies to regenerate IVD matrix, hence restoring disc height and thus reversing degenerative disc disease, has been suggested. Cartilage-derived morphogenetic protein (CDMP) is a growth factor which stimulates proteoglycan production in chondrocyte-like cells and thus could be a useful growth factor for LBP therapies. However, little is known about the expression of CDMP or its receptor in human IVD, nor its effects on human disc cells.  相似文献   

19.

Introduction  

Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.  相似文献   

20.

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号