首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   

2.
A full-length cDNA clone (LeST3), encoding a putative tomato sugar transporter, was isolated from mycorrhizal roots by using a PCR-based approach. Based on sequence similarity, conserved motifs and predicted membrane topology, LeST3 was classified as a putative monosaccharide transporter of the sugar transporter subgroup of the major facilitator superfamily. Southern blot analysis showed that LeST3 represents a single-copy gene in tomato. To investigate its function, LeST3 was expressed in a hexose transport-deficient mutant of Saccharomyces cerevisiae. Although LeST3 was correctly transcribed in yeast, it did not restore growth on hexoses of the S. cerevisiae mutant. LeST3 gene expression was increased in the leaves of plants colonised by the arbuscular mycorrhizal (AM) fungi Glomus mosseae or Glomus intraradices and in those of plants infected with the root pathogen Phytophthora parasitica. These data suggest that LeST3 plays a role in the transport of sugars into the sink tissues and responds to the increased demand for carbohydrates exerted by two AM fungi and by a root pathogen to cope with the increased metabolic activity of the colonised/infected tissues or to supply carbohydrates to the AM fungus.  相似文献   

3.
4.
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.  相似文献   

5.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

6.
7.
The interaction of sulfate assimilation with nitrate assimilation inBrassica juncea roots was analyzed by monitoring the regulation of ATP sulfurylase (AS), adenosine-5’-phosphosulfate reductase (AR), sulfite reductase (SiR), and nitrite reductase (NiR). Depending on the status of sulfur and nitrogen nutrition, AS and AR activities and mRNA levels were increased by sulfate starvation but decreased by nitrate starvation. The activation of AS and AR by sulfate starvation was inhibited by sulfate/nitrate starvation. However, the rise in steady-state mRNA levels for AS and AR by sulfate starvation was not affected by sulfate/nitrate starvation. SiR gene expression was slightly activated by both sulfate starvation and sulfate/nitrate starvation, but was decreased by nitrate starvation. Although NiR gene expression was little affected by sulfate starvation, it was diminished significantly by either nitrate or nitrate/sulfate starvation. Cysteine (Cys) also decreased AS and AR activities and mRNA levels even when plants were simultaneously starved for sulfate; in contrast, both SiR and NiR gene expressions were only slightly, if at all, affected under the same conditions. This supports our conclusion that Cys, the end-product of sulfate assimilation, is the key regulatory signal. Moreover, SiR and NiR apparently are not the linking step in the co-regulation of sulfate and nitrate assimilation in plants.  相似文献   

8.
Transgenic sweetpotato (cv. Lizixiang) plants exhibiting enhanced salt tolerance were developed using LOW OSMOTIC STRESS 5 (LOS5) with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors the pCAMBIA1300 binary vector with the LOS5 and hygromycin phosphotransferase II (hptII) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 26 plants were produced from the inoculated 200 cell aggregates of Lizixiang via somatic embryogenesis. PCR analysis showed that 23 of the 26 regenerated plants were transgenic plants. All of the transgenic plants exhibited higher salt tolerance compared to the untransformed control plants by in vitro assay for salt tolerance with 86 mM NaCl. When plants were exposed to 86 mM NaCl, 16 transgenic plants had significantly higher levels of superoxide dismutase (SOD), proline, and abscisic acid (ABA) and significantly lower malonaldehyde (MDA) contents than those in untransformed control plants. Salt tolerance of these 16 plants was further evaluated with Hoagland solution containing 86 mM NaCl in a greenhouse. Four of the sixteen had significantly better growth and rooting ability than the remaining 12 plants and control plants. Stable integration of the LOS5 gene into the genome of the 4 salt-tolerant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated LOS5 gene ranged from 1 to 3. High level of LOS5 gene expression in the 4 salt-tolerant transgenic plants was demonstrated by real-time quantitative PCR analysis. This study provides an important approach for improving salt tolerance of sweetpotato.  相似文献   

9.
Flowers were produced on sterile cucumber (Cucumis sativus L.) plants grown in vitro from seed and micropropagated shoots from stem fragments. The highest numbers of flowers on plants from both sources were produced on Murashige and Skoog (MS) medium without plant growth regulators (PGR), as well as with 6 μM of kinetin (Kin). Plants cultured on MS medium supplemented with 8.9 μM benzyladenine (BA) and 1.1 μM 1-naphthaleneacetic acid (NAA) did not flower. In vitro grown plants produced fewer, smaller flowers compared with greenhouse-grown plants. Male and female flowers developed on plants grown in vitro from seed and were morphologically similar to flowers on greenhouse grown plants. Micropropagated shoots produced male flowers with altered morphology. The highest viability (72.9 ± 4.2%) and germination (69.5 ± 4.1%) of pollen were observed for plants grown from seed on MS medium supplemented with 6 μM Kin. Cytological observations of meiosis in anthers of male flowers from in vitro grown plants revealed abnormalities, such as monads, dyads, triads, polyads, microcytes and degeneration of tetrads, causing reduced viability and germination of pollen. The fewest meiotic irregularities in pollen mother cells were observed in plants grown on MS medium that was PGR-free (12.1 ± 0.9%) or with 6 μM Kin (20.9 ± 1.7%).  相似文献   

10.
11.
Wang H  Chen X  Xing X  Hao X  Chen D 《Plant cell reports》2010,29(12):1391-1399
Atrazine chlorohydrolase (AtzA) catalyzes hydrolytic dechlorination and can be used in detoxification of atrazine, a herbicide widely employed in the control of broadleaf weeds. In this study, to investigate the potential use of transgenic tobacco plants for phytoremediation of atrazine, atzA genes from Pseudomonas sp. strain ADP and Arthrobacter strain AD1 were transferred into tobacco. Three and four transgenic lines, expressing atzA-ADP and atzA-AD1, respectively, were produced by Agrobacterium-mediated transformation. Molecular characterization including PCR, RT-PCR and Southern blot revealed that atzA was inserted into the tobacco genome and stably inherited by and expressed in the progenies. Seeds of the T1 transgenic lines had a higher germination percentage and longer roots than the untransformed plants in the presence of 40–150 mg/l atrazine. The T2 transgenic lines grew taller, gained more dry biomass, and had higher total chlorophyll content than the untransformed plants after growing in soil containing 1 or 2 mg/kg atrazine for 90 days. No atrazine residue remained in the soil in which the T2 transgenic lines were grown (except 401), while, in the case of the untransformed plants, 0.91 mg (81.3%) and 1.66 mg (74.1%) of the atrazine still remained in the soil containing 1 and 2 mg/kg of atrazine, respectively, indicating that the transgenic lines could degrade atrazine effectively. The transgenic tobacco lines developed could be useful for phytoremediation of atrazine-contaminated soil and water.  相似文献   

12.
 To test the hypothesis that the contribution of phosphoribulokinase (PRK) to the control of photosynthesis changes depending on the light environment of the plant, the response of transgenic tobacco (Nicotiana tabacum L.) transformed with antisense PRK constructs to irradiance was determined. In plants grown under low irradiance (330 μmol m−2 s−1) steady-state photosynthesis was limited in plants with decreased PRK activity upon exposure to higher irradiance, with a control coefficient of PRK for CO2 assimilation of 0.25 at and above 800 μmol m−2 s−1. The flux control coefficient of PRK for steady-state CO2 assimilation was zero, however, at all irradiances in plant material grown at 800 μmol m−2 s−1 and in plants grown in a glasshouse during mid-summer (alternating shade and sun 300–1600 μmol m−2 s−1). To explain these differences between plants grown under low and high irradiances, Calvin cycle enzyme activities and metabolite content were determined. Activities of PRK and other non-equilibrium Calvin cycle enzymes fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase and ribulose-1,5-bisphosphate carboxylase-oxygenase were twofold higher in plants grown at 800 μmol m−2 s−1 or in the glasshouse than in plants grown at 330 μmol m−2 s−1. Activities of equilibrium enzymes transketolase, aldolase, ribulose-5-phosphate epimerase and isomerase were very similar under all growth irradiances. The flux control coefficient of 0.25 in plants grown at 330 μmol m−2 s−1 can be explained because low ribulose-5-phosphate content in combination with low PRK activity limits the synthesis of ribulose-1,5-bisphosphate. This limitation is overcome in high-light-grown plants because of the large relative increase in activities of sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase under these conditions, which facilitates the synthesis of larger amounts of ribulose-5-phosphate. This potential limitation will have maintained evolutionary selection pressure for high concentrations of PRK within the chloroplast. Received: 15 November 1999 / Accepted: 27 January 2000  相似文献   

13.
In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher in shoots and roots of transgenic seedlings, and 1.5- to 2-fold higher in shoots but not roots of selenate-supplied mature ATP-sulfurylase-overexpressing (APS) plants. The APS plants showed increased selenate reduction: x-ray absorption spectroscopy showed that root and shoot tissues of mature APS plants contained mostly organic Se (possibly selenomethionine), whereas wild-type plants accumulated selenate. The APS plants were not able to reduce selenate when shoots were removed immediately before selenate was supplied. In addition, Se accumulation in APS plants was 2- to 3-fold higher in shoots and 1.5-fold higher in roots compared with wild-type plants, and Se tolerance was higher in both seedlings and mature APS plants. These studies show that ATP sulfurylase not only mediates selenate reduction in plants, but is also rate limiting for selenate uptake and assimilation.  相似文献   

14.
In Brassicas, the Fatty Acid Elongation1 (FAE1) gene product, a 3-ketoacyl-CoA synthase, is the first in a 4-enzyme complex involved in the synthesis of erucic acid from oleic acid. The FAE1 homologue from Brassica juncea cv. Pusa Bold was cloned in a binary vector both in sense and antisense orientations under the control of the CaMV35S promoter. The recombinant binary vectors were used to transform B. juncea cv. RLM 198 via Agrobacterium tumefaciens. The presence of the transgene was confirmed by polymerase chain reaction and Southern hybridization. Northern and western analyses showed the expression of the gene and protein, respectively, in the transgenic plants. Analyses of the fatty acid profile of the seed oil from homozygous T4 generation seeds revealed that over-expression of the FAE1 gene caused a 36% increase in the percent of erucic acid (37–49% compared to 36% in untransformed control). The down-regulation of FAE1 caused an 86% decrease in the percent of erucic acid to as low as 5% in the seed oil of transgenic plants. Thus, it is clearly possible to alter erucic acid content of mustard by altering the expression level of the FAE 1 gene. S. Kanrar and J. Venkateswari equally contributed to this work.  相似文献   

15.
Phyllanthus amarus Schum & Thonn. is a source of various pharmacologically active compounds such as phyllanthin, hypophyllanthin, gallic acid, catechin, and nirurin, a flavone glycoside. A genetic transformation method using Agrobacterium tumefaciens was developed for this plant species for the first time. Shoot tips of full grown plants were used as explants for Agrobacterium-mediated transformation. Transgenic plants were obtained by co-cultivation of shoot tips explants and A. tumefaciens strain LBA4404 containing the pCAMBIA 2301 plasmid harboring neomycin phosphotransferase II (NPT II) and β-glucuronidase encoding (GUS) genes in the T-DNA region in the presence of 200 μM acetosyringone. Integration of the NPT II gene into the genome of transgenic plants was verified by PCR and Southern blot analyses. Expression of the NPT II gene was confirmed by RT-PCR analysis. An average of 25 explants was used, out of which an average of 19 explants produced kanamycin-resistant shoots, which rooted to produce 13 complete transgenic plants.  相似文献   

16.
A protocol for the production of transgenic plants was developed for Lotus tenuis via Agrobacterium-mediated transformation of leaf segments. The explants were co-cultivated (for 3 days) with an A. tumefaciens strain harbouring either the binary vector pBi RD29A:oat arginine decarboxylase (ADC) or pBi RD29A:glucuronidase (GUS), which carries the neomycin phosphotransferase II (nptII) gene in the T-DNA region. Following co-cultivation, the explants were cultured in Murashige and Skoog medium supplemented with naphthalenacetic acid (NAA) and benzyladenine (BA) and containing kanamycin (30 μg ml−1) and cefotaxime (400 μg ml−1) for 45 days. The explants were subcultured several times (at 2-week intervals) to maintain the selection pressure during the entire period. About 40% of the explants inoculated with the pBiRD29:ADC strain produced eight to ten adventitious shoots per responsive explant through a direct system of regeneration, whereas 69% of the explants inoculated with the pBi RD29A:GUS strain produced 13–15 adventitious shoots per responsive explant. The selected transgenic lines were identified by PCR and Southern blot analysis. Three ADC transgenic lines were obtained from 30 infected explants, whereas 29 GUS transgenic lines were obtained from 160 explants, corresponding to a transformation efficiency of 10 and 18.1%, respectively. More than 90% of the in vitro plantlets were successfully transferred to the soil. The increase in the activity of arginine decarboxylase from stressed ADC- Lt19 lines was accompanied by a significant rise in the putrescine level. The GUS transgenic line driven by the RD29A promoter showed strong signals of osmotic stress in the leaves and stem tissues. All of the transgenic plants obtained exhibited the same phenotype as the untransformed controls under non-stress conditions, and the stability of the gene introduced into the cloned materials was established.  相似文献   

17.
Phytases release inorganic phosphates from phytate in soil. A gene encoding phytase (AfPhyA) was isolated from Aspergillus ficuum and its ability to degrade phytase and release phosphate was demonstrated in Saccharomyces cerevisiae. A promoter from the Arabidopsis Pky10 gene and the carrot extensin signal peptide were used to drive the root-specific and secretory expression of the AfPhyA gene in soybean plants. The phytase activity and inorganic phosphate levels in transgenic soybean root secretions were 4.7 U/mg protein and 439 μM, respectively, compared to 0.8 U/mg protein and 120 μM, respectively, in control soybeans. Our results demonstrated the potential usefulness of the root-specific promoter for the exudation of recombinant phytases and offered a new perspective on the mobilization of phytate in soil to inorganic phosphates for plant uptake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guilan Li and Shaohui Yang authors contribute equally to the paper.  相似文献   

18.
This study was designed to identify rhizobial strains specific to greengram expressing higher tolerance against insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide-stress. Of the 50 bradyrhizobial isolates, the Bradyrhizobium sp. strain MRM6 showed tolerance up to 1,600 μg mL−1 against each of fipronil and pyriproxyfen. The tolerant Bradyrhizobium sp. (vigna) produced plant growth promoting substances in substantial amounts, both in the presence and absence of insecticides. The strain MRM6 was further used to investigate its impact on greengram grown in soils treated with 200 (the recommended dose), 400 and 600 μg kg−1 soil of fipronil and 1,300 (the recommended dose), 2,600 and 3,900 μg kg−1 soil of pyriproxyfen. Fipronil at 600 μg kg−1 soils and pyriproxyfen at 3,900 μg kg−1 soils had greatest toxic effects and decreased plant biomass, symbiotic efficiency, nutrient uptake and seed yield of greengram plants. The Bradyrhizobium sp. (vigna) inoculant when used with fipronil and pyriproxyfen significantly increased the measured parameters compared to the plants grown in soils treated solely with the same concentration of each insecticide. This study inferred that the Bradyrhizobium sp. (vigna) strain MRM6 may be exploited as bio-inoculant to increase the productivity of greengram exposed to insecticide-stressed soils.  相似文献   

19.
Callus cultures from nodal and leaf explants of Phyllanthus amarus were established on Murashige and Skoog (MS) medium with various combinations of auxins and cytokinins. The leaf-derived callus induced on 2.26 μM 2,4-dichlorophenoxyacetic acid (2, 4-D) + 2.32 μM Kinetin (Kin) upon transfer to medium containing thidiazuron (TDZ) exhibited higher shoot regeneration (32.4 ± 1.3 shoots per culture). Four-week-old shoots rooted readily on 1.5 μM Indol acetic acid (IAA)-containing medium and were successfully acclimatized with 98% survival. The lignans, Phyllanthin (PH) and Hypohyllanthin (HPH), of leaf extracts from naturally grown plants were identified by using TLC, HPLC and H1-NMR. The PH and HPH production in the regenerated shoots was compared to their production in callus cultures, plants under field conditions and in naturally grown plants. The regenerated shoots on MS + 2.27 μM TDZ produced about two times higher PH and HPH than the leaves of naturally grown plant. The present study provides a useful system for further studies on in vitro morphogenesis, elicitor-assisted production of PH and HPH and A. rhizogenes-mediated genetic transformation in Phyllanthus amarus.  相似文献   

20.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号