首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surfactant protein A (SP-A) is an innate immune molecule that regulates pathogen clearance and lung inflammation. SP-A modulates innate immune functions such as phagocytosis, cytokine production, and chemotaxis; however, little is known about regulation of adaptive immunity by SP-A. Dendritic cells (DCs) are the most potent antigen-presenting cell with the unique capacity to activate naive T cells and initiate adaptive immunity. The goal of this study was to test the hypothesis that SP-A regulates the differentiation of immature DCs into potent T cell stimulators. The data show that incubation of immature DCs for 24 h with SP-A inhibits basal- and LPS-mediated expression of major histocompatibility complex class II and CD86. Stimulation of immature DCs by SP-A also inhibits the allostimulation of T cells, enhances dextran endocytosis, and alters DC chemotaxis toward RANTES and secondary lymphoid tissue chemokine. The effects on DC phenotype and function are similar for the structurally homologous C1q, but not for SP-D. These studies demonstrate that SP-A participates in the adaptive immune response by modulating important immune functions of DCs.  相似文献   

2.
Immune responses are generally divided into innate and adaptive responses, and the efficacy of one is thought to be independent of the other. The regulation of immune responses, however, is complex, and accumulating evidence indicates that multiple interactions between immune effector cells are common and are crucial for the initiation, as well as the outcome, of these responses. Dendritic cells, long recognized as key initiators of primary adaptive immunity, are now also seen as crucial regulators of aspects of innate immunity, in particular natural-killer-cell function. Reciprocally, natural killer cells can influence the activity of dendritic cells. Here, we review recent exciting progress in this field, and we highlight the impact of this cellular crosstalk on the design of immune-based therapies for control of infection and cancer.  相似文献   

3.
The antigen receptors on cells of innate immune systems recognizebroadly expressed markers on non-host cells while the receptorson lymphocytes of the adaptive immune system display a higherlevel of specificity. Adaptive immunity, with its exquisitespecificity and immunological memory, has only been found inthe jawed vertebrates, which also display innate immunity. Jawlessfishes and invertebrates only have innate immunity. In the adaptiveimmune response, T and B-lymphocytes detect foreign agents orantigens using T cell receptors (TCR) or immunoglobulins (Ig),respectively. While Ig can bind free intact antigens, TCR onlybinds processed antigenic fragments that are presented on moleculesencoded in the major histocompatibility complex (MHC). MHC moleculesdisplay variation through allelic polymorphism. A diverse repertoireof Ig and TCR molecules is generated by gene rearrangement andjunctional diversity, processes carried out by the recombinaseactivating gene (RAG) products and terminal deoxynucleotidyltransferase (TdT). Thus, the molecules that define adaptiveimmunity are TCR, Ig, MHC molecules, RAG products and TdT. Nodirect predecessors of these molecules have been found in thejawless fishes or invertebrates. In contrast, the complementcascade can be activated by either adaptive or innate immunesystems and contains examples of molecules that gradually evolvedfrom non-immune functions to being part of the innate and thenadaptive immune system. In this paper we examine the moleculesof the adaptive immune system and speculate on the existenceof direct predecessors that were part of innate immunity.  相似文献   

4.
One of the most controversial issues in immunology for over a century has been whether an effective immune response can be elicited against malignant tumours. Whether the immunology community has believed cancer immunotherapy is feasible or impossible has been largely determined by the prevailing immunological paradigms at that time. In fact, during the last 110 years it is possible to trace at least five dramatic fluctuations in attitude towards cancer immunotherapy. It now appears, however, that overwhelming evidence is available to support the view that both the innate and adaptive immune responses can recognize and eliminate tumours. On the other hand, it remains to be seen if these immune responses can be harnessed to control cancer as, at the time of diagnosis, many tumours have already been immunoselected to be highly resistant to immune elimination. Based on these observations it is argued that immunotherapy approaches, other than the generation of tumour-specific cytotoxic T lymphocytes, must be explored. Alternative strategies include recruiting tumouricidal myeloid cells into tumours, generating antiangiogenic immune responses and directing innate immunity to hypoxia-induced ligands on tumour cells.  相似文献   

5.
The innate immune system is a critical first line of defense against many microbial, fungal and viral pathogens. Toll-like receptors play a central role in innate immunity, recognizing conserved pathogen-associated molecular patterns and generating signals leading to the initiation of an adaptive immune response. Because of their ability to modulate adaptive immunity, Toll-like receptors represent strategic therapeutic targets for diseases that involve inappropriate adaptive immune responses, such as sepsis, autoimmune disorders, cancer and allergy.  相似文献   

6.
Dendritic cells were discovered 25 years ago as professional antigen presenting cells bridging together innate and adaptive immunity. Recently additional functions of dendritic cells have been uncovered indicating a relevant role of dendritic cells in immune system regulation. Indeed, they are the professional sensors of the immune system that can detect perturbations caused by non-self infectious as well as self non-infectious signals in most tissues. Dendritic cells discriminate both antigen amounts and antigen persistence through their receptor repertoire via the integration of different signaling pathways. The environment plays an essential role in conditioning the effector functions of dendritic cells leading either to the activation or suppression of adaptive immunity.  相似文献   

7.
Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.  相似文献   

8.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

9.
STAT3 in immune responses and inflammatory bowel diseases   总被引:5,自引:0,他引:5  
Fu XY 《Cell research》2006,16(2):214-219
STAT3 has been known as a mediator for gene expression induced by many important cytokines. Recent studies have suggested that STAT3 has important functions in regulation of both innate and adaptive immunity. Loss of STAT3 in immune cells caused severe inflammation in response to pathogens. This review discusses the recent progress and suggests directions for the future research on this interesting molecule.  相似文献   

10.
Intestinal microflora plays a pivotal role in the development of the innate immune system and is essential in shaping adaptive immunity. Dysbacteriosis of intestinal microflora induces altered immune responses and results in disease susceptibility. Dendritic cells (DCs), the professional antigen‐presenting cells, have gained increasing attention because they connect innate and adaptive immunity. They generate both immunity in response to stimulation by pathogenic bacteria and immune tolerance in the presence of commensal bacteria. However, few studies have examined the effects of intestinal dysbacteriosis on DCs. In this study, changes of DCs in the small intestine of mice under the condition of dysbacteriosis induced by ceftriaxone sodium were investigated. It was found that intragastric administration of ceftriaxone sodium caused severe dysteriosis in mice. Compared with controls, numbers of DCs in mice with dysbacteriosis increased significantly (P = 0.0001). However, the maturity and antigen‐presenting ability of DCs were greatly reduced. In addition, there was a significant difference in secretion of IL‐10 and IL‐12 between DCs from mice with dysbacteriosis and controls. To conclude, ceftriaxone‐induced intestinal dysbacteriosis strongly affected the numbers and functions of DCs. The present data suggest that intestinal microflora plays an important role in inducing and maintaining the functions of DCs and thus is essential for the connection between innate and adaptive immune responses.  相似文献   

11.
Dendritic cells and cytokines in immune rejection of cancer   总被引:2,自引:0,他引:2  
Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients.  相似文献   

12.
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer–virus–anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.  相似文献   

13.
Chronic hepatitis C virus (HCV) is a liver-borne infectious disease that remains a major global health threat. The mechanisms whereby HCV evades the host's immune defences and establishes persistent infection remain elusive; but they likely require a complex and coordinated interruption of the interplay between innate and adaptive immune actors. This review discusses the concept that HCV evades the host's immune response to its components partly because of its ability to inactivate the major orchestrator of the adaptive immune response - the DCs. It argues that DCs constitute an immunologically relevant cellular viral host actively targeted by HCV. This targeting disrupts TRIF- and IPS-1-dependent but not MyD88-coupled pathogen recognition receptors (PRR) sensing pathways in these infected cells to foil the networks by which innate immunity to HCV is translated into virus-specific adaptive immune-mediated host resistance. Thus, as a culprit, this cell-specific and numerically restrained DC defect offers a promising field of investigation in which to study and understand the HCV-restricted nature of the deficit in cellular immunity in persistently infected -individuals who have otherwise normal immune functions to unrelated pathogens. In this model, protective immunity is contingent on proper processing and delivery of danger signals by DCs presenting HCV antigens.  相似文献   

14.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

15.
Trained immunity: a memory for innate host defense   总被引:1,自引:0,他引:1  
Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even display transplant rejection. In mammals, past "forgotten" studies demonstrate cross-protection between infections independently of T and B cells, and more recently memory properties for NK cells and macrophages, prototypical cells of innate immunity, have been described. We now posit that mammalian innate immunity also exhibits an immunological memory of past insults, for which we propose the term "trained immunity." Understanding trained immunity will revolutionize our view of host defense and immunological memory, and could lead to defining a new class of vaccines and immunotherapies.  相似文献   

16.
Chronic inflammation is a contributing factor to overall cancer risk as well as cancer promotion and progression; however, pathways regulating onset of cancer-promoting inflammatory responses are still poorly understood. Clinical data suggest that deficient anti-tumor cell-mediated immunity, in combination with enhanced pro-tumor humoral and/or innate immunity (inflammation), are significant factors influencing malignant outcome. Here, we discuss therapeutic implications from clinical data and experimental studies using de novo immune-competent mouse models of cancer development that together are revealing molecular and cellular mechanisms underlying interactions between immune cells and evolving neoplastic cells that regulate cancer outcome. Understanding the functionally significant links between adaptive and innate immunity that regulate cancer development will open new therapeutic opportunities to manipulate aspects of immunobiology and minimize lethal effects of cancer development.  相似文献   

17.
The immune system has a dual role in cancer development and progression. On the one hand, it can eradicate emerging malignant cells, but on the other hand, it can actively promote growth of malignant cells, their invasive capacities and their ability to metastasize. Immune cells with predominantly anti-tumor functionality include cells of the innate immune system, such as natural killer cells, and cells of adaptive immunity, such as conventional dendritic cells and cytotoxic T lymphocytes. Immune cells with predominantly pro-tumor functionality include a broad spectrum of cells of the innate and adaptive immune system, such as type 2 neutrophils and macrophages, plasmacytoid DC, myeloid-derived suppressor cells and regulatory T lymphocytes. The presence of immune cells with tumor-suppressive and tumor-promoting activity in the cancer microenvironment and in peripheral blood is usually associated with good clinical outcomes and poor clinical outcomes, respectively. Significant advances in experimental and clinical oncoimmunology achieved in the last decade open an opportunity for the use of modern morphologic, flow cytometric and functional tests in clinical practice. In this review, we describe an integrated approach to clinical evaluation of the immune status of cancer patients for diagnostic purposes, prognostic/predictive purposes (evaluation of patient prognosis and response to treatment) and for therapeutic purposes.  相似文献   

18.
IL-27, a heterodimeric cytokine of IL-12 family, regulates both innate and adaptive immunity largely via Jak-Stat signaling. IL-27 can induce IFN-γ and inflammatory mediators from T lymphocytes and innate immune cells. IL-27 has unique anti-inflammatory properties via both Tr1 cells dependent and independent mechanisms. Here the role and biology of IL-27 in innate and adaptive immunity are summarized, with special interest with immunity against Mycobacterium tuberculosis.  相似文献   

19.
Persistent hepatitis C virus infection is associated with progressive hepatic fibrosis and liver cancer. Acute infection evokes several distinct innate immune responses, but these are partially or completely countered by the virus. Hepatitis C virus proteins serve dual functions in replication and immune evasion, acting to disrupt cellular signaling pathways leading to interferon synthesis, subvert Jak-STAT signaling to limit expression of interferon-stimulated genes, and block antiviral activities of interferon-stimulated genes. The net effect is a multilayered evasion of innate immunity, which negatively influences the subsequent development of antigen-specific adaptive immunity, thereby contributing to virus persistence and resistance to therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号