首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 124 毫秒
1.
Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of two prey species and three predator species, we tested whether prey preference of the predators is matched by the associated reproductive success.The predators involved areAmblyseius finlandicus (Oudemans),Am. potentillae (Garman) andTyphlodromus pyri Scheuten. The prey species are the apple rust mite (Aculus schlechtendali (Nalepa)) and the fruit-tree red spider mite (Panonychus ulmi (Koch)).Reproductive success was assessed in terms of intrinsic rate of increase and for one predator also in terms of diapause induction. All three predator species reached highest reproductive success on the same prey species: apple rust mite. This was most pronounced for the predatorAm. finlandicus, because its larval stage suffered severe mortality when feeding onP. ulmi.An independent study on prey preference of the three predator species (Dicke et al., 1988) revealed thatAm. finlandicus prefersAc. schlechtendali toP. ulmi, whereas the other two predator species have the reverse preference.Thus, on the basis of current data, prey preference ofAm. finlandicus can be understood in terms of reproductive success. However, this is not so for prey preference ofT. pyri andAm. potentillae. Investigations needed for a better understanding of prey preference of the last-named two predator species are discussed.  相似文献   

2.
The larval feeding traits and oviposition behavior of ten phytoseiid mite species were investigated in the presence and absence of prey. Results showed a correlation between prey preferences, the manner of oviposition, and larval feeding behavior. Species with larvae that must feed to develop preferred prey species that were distributed sparsely and laid their eggs in a scattered fashion. Species with larvae that do not need to feed to develop preferred prey species with a high aggregation and laid their eggs in a clumped fashion. The results suggest that nonfeeding larval behavior may be an adaptation to avoid sib-cannibalism, which occurs when eggs are oviposited closer together. Received: October 13, 2000 / Accepted: December 15, 2000  相似文献   

3.
The establishment of the neotropical predatory mite Typhlodromalus aripo in sub-Saharan Africa has resulted in broadly successful biological control of the cassava green mite Mononychellus tanajoa throughout the cassava belt of Africa. In some mid-altitude areas and drier lowland savannahs of sub-Saharan Africa, which are characterized by cool or hot long (≥5 months) dry seasons, the predator disappears from its habitat in the cassava apex during the dry season and reappears after the onset of rains. It is not known, however, where the predator remains during this time period. In this study, we conducted a field enclosure experiment of cassava plants with the objectives to determine if (a) T. aripo survives at very low densities in the apex, if (b) it survives in the soil or leaf litter below the cassava plant, and if (c) it recolonizes the cassava plant from the surrounding vegetation. Towards the end of the dry season, when the predators had disappeared from all cassava plants included in the experiment, five treatments were applied: (1) plants without enclosure; (2) plants with enclosure; (3) plants with enclosure, apices removed; (4) plants with enclosure, glue barrier around stem; and (5) plants kept free of T. aripo, without enclosure. Predator (re)appearance on cassava apices was monitored non-destructively at weekly intervals and was expressed as the proportion of plants with at least one apex with T. aripo per total number of plants of the treatment. The predators reappeared first on the plants of the treatments (1), (2), and (4). With a time lag of 7–8 weeks, the predators appeared also on the plants of the treatments (3) and (5). The time pattern of the predator’s (re)appearance in the cassava apex of the different treatments suggests that (a) T. aripo survives the dry season in very low densities in the cassava apex; this result is supported by an assessment of the efficiency of non-destructive visual in-field apex inspections which proved that about 10% of the cassava apices that had T. aripo were not recognized as such; (b) T. aripo does not survive in the soil or leaf litter, but we did document cases in a screenhouse experiment, where few individuals migrated down to the ground and walked over exposed soil until they reached the apex bouquet traps; additionally, microclimate measurements in various cassava plant strata proved that the cassava apex and the cassava stem base are the locations with the highest relative humidity during the dry season—which makes the stem base a potentially interesting refuge; (c) T. aripo does not survive in the surrounding vegetation, which is supported by a vegetation survey, where T. aripo was not found on any other plant species than cassava.  相似文献   

4.
The objective of this study was to evaluate the diversity of Phytoseiidae in the Atlantic Forest of São Paulo State, Brazil, and to estimate the possible role of this ecosystem as a reservoir for mites of this family. Samples were taken from 187 plant species belonging to 73 plant families in three vegetation types of the Atlantic Forest, from February 2001 to October 2002. In total, 1102 specimens of 54 species belonging to 20 genera of the three phytoseiid subfamilies were found. Most specimens (93%) and species (91%) belonged to the Amblyseiinae. The majority of species found belong to taxonomic groups largely composed of generalist predators (especially Amblyseius and Euseius). In general, the more abundant mites were found on a diversity of plant species, but a few of the abundant species were found on only a small number of plant species. Only nine of the mites encountered during this study are of known agricultural importance. The results obtained suggest the importance of the wide plant diversity in the region to sustain a wide diversity of phytoseiids. The extensive clearance of the Brazilian Atlantic Forest is a threat to the diversity of these mites, important predators of mite pests.  相似文献   

5.
Phytoseiid mite larvae vary in size and feeding type. We compared larval size to feeding by larvae, cannibalism of larvae by adult females, egg and adult female size and the setae lengths of larvae and adults among 13 species. There was no relationship between size of larvae and either feeding by larvae or cannibalism of larvae by adult female mites. Correlations were highest between larval size as measured by idiosoma plus extended leg lengths and adult female size of idiosoma plus extended leg lengths (r2=0.746), while next highest was larval idiosoma length and adult female idiosoma length (r2=0.662) and then larval idiosoma length and egg length (r2=0.579). Based on idiosoma length, Phytoseiulus persimilis had the largest larvae (non-feeding) among species and Euseius finlandicus had the smallest larvae (obligatory feeding). However, based on idiosoma length plus extended leg length, obligatory feeding larvae (on pollen or mites) of E. finlandicus and Euseius hibisci were largest and facultative feeding larvae (on mites) of Neoseiulus californicus and obligatory feeding larvae (on mites) of Galendromus occidentalis were the smallest. Among species with non- or facultative feeding larvae, Amblyseius andersoni and Neoseiulus barkeri had larger larvae and Typhlodromus pyri and Neoseiulus fallacis had smaller larvae when leg lengths were included in larval size. Setae lengths of larvae versus adult females (after adjustment for body sizes) showed high correlation for j6 (r2=0.942) and s4 (r2=0.854), but low correlation for larval Z4 versus adult female Z4 (r2=0.084) or Z5 (r2=0.063). Overall, larval morphological traits were most closely correlated to traits of other life stages, although for setae there were some exceptions. Differences in the functions of setae j6, s4 and Z4 in the larva versus adult female are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号