首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C function in Arabidopsis, which specifies stamen and carpel identity, is represented by a single gene called AGAMOUS (AG). From both petunia and cucumber, two MADS box genes have been isolated. Both share a high degree of amino acid sequence identity with the Arabidopsis AG protein. Their roles in specifying stamen and carpel identity have been studied by ectopic expression in petunia, resulting in plants with different floral phenotypes. Cucumber MADS box gene 1 (CUM1) induced severe homeotic transformations of sepals into carpelloid structures and petals into stamens, which is similar to ectopic AG expression in Arabidopsis plants. Overexpression of the other cucumber AG homolog, CUM10, resulted in plants with partial transformations of the petals into antheroid structures, indicating that CUM10 is also able to promote floral organ identity. From the two petunia AG homologs pMADS3 and Floral Binding Protein gene 6 (FBP6), only pMADS3 was able to induce homeotic transformations of sepals and petals. Ectopic expression of both pMADS3 and FBP6, as occurrs in the petunia homeotic mutant blind, phenocopies the pMADS3 single overexpresser plants, indicating that there is no additive effect of concerted expression. This study demonstrates that in petunia and cucumber, multiple AG homologs exist, although they differ in their ability to induce reproductive organ fate.  相似文献   

2.
We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development.  相似文献   

3.
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals.  相似文献   

4.
5.
The C-class MADS box gene AGAMOUS (AG) plays crucial roles in Arabidopsis thaliana development by regulating the organ identity of stamens and carpels, the repression of A-class genes, and floral meristem determinacy. To examine the conservation and diversification of C-class gene function in monocots, we analyzed two C-class genes in rice (Oryza sativa), OSMADS3 and OSMADS58, which may have arisen by gene duplication before divergence of rice and maize (Zea mays). A knockout line of OSMADS3, in which the gene is disrupted by T-DNA insertion, shows homeotic transformation of stamens into lodicules and ectopic development of lodicules in the second whorl near the palea where lodicules do not form in the wild type but carpels develop almost normally. By contrast, RNA-silenced lines of OSMADS58 develop astonishing flowers that reiterate a set of floral organs, including lodicules, stamens, and carpel-like organs, suggesting that determinacy of the floral meristem is severely affected. These results suggest that the two C-class genes have been partially subfunctionalized during rice evolution (i.e., the functions regulated by AG have been partially partitioned into two paralogous genes, OSMADS3 and OSMADS58, which were produced by a recent gene duplication event in plant evolution).  相似文献   

6.
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.   总被引:25,自引:0,他引:25  
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.  相似文献   

7.
B-function genes determine the identity of petals and stamens in the flowers of model plants such as Arabidopsis and Antirrhinum . Here, we show that a putative B-function gene BpMADS2 , a birch homolog for PISTILLATA , is expressed in stamens and carpels of birch inflorescences. We also present a novel birch gene BpMADS8 , a homolog for APETALA3 / DEFICIENS , which is expressed in stamens. Promoter-GUS analysis revealed that BpMADS2 promoter is active in the receptacle of Arabidopsis flower buds while BpMADS8 promoter is highly specific in mature stamens. BpMADS2 promoter:: BARNASE construct prevented floral organ development in Arabidopsis and tobacco. In birch, inflorescences with degenerated stamens and carpels were obtained. BpMADS8::BARNASE resulted in degeneration of stamens in Arabidopsis and birch causing male sterility. In tobacco, only sepals were developed instead of normal flowers. The results show that the BpMADS2::BARNASE construct can be used to specifically disrupt floral organ development in phylogenetically distant plant species. The stamen-specific promoter of BpMADS8 is a promising tool for biotechnological applications in inducing male sterility or targeting gene expression in the late stamen development.  相似文献   

8.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

9.
Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth whorl organ primordia but is not present in the organ primordia of whorls one and two. In contrast to the early expression pattern, later in flower development, AG RNA is restricted to specific cell types within the stamens and carpels as cellular differentiation occurs in those organs. Ectopic AG expression patterns in flowers mutant for the floral homeotic gene APETELA2 (AP2), which regulates early AG expression, suggest that the late AG expression is not directly dependent on AP2 activity.  相似文献   

10.
During Arabidopsis flower development a set of homeotic genes plays a central role in specifying the distinct floral organs of the four whorls, sepals in the outermost whorl, and petals, stamens, and carpels in the sequentially inner whorls. The current model for the identity of the floral organs includes the SEPALLATA genes that act in combination with the A, B and C genes for the specification of sepals, petals, stamens and carpels. According to this new model, the floral organ identity proteins would form different complexes of proteins for the activation of the downstream genes. We show that the presence of SEPALLATA proteins is needed to activate the AG downstream gene SHATTERPROOF2, and that SEPALLATA4 alone does not provide with enough SEPALLATA activity for the complex to be functional. Our results suggest that CAULIFLOWER may be part of the protein complex responsible for petal development and that it is fully required in the absence of APETALA1 in 35S::SEP3 plants. In addition, genetic and molecular experiments using plants constitutively expressing SEPALLATA3 revealed a new role of SEPALLATA3 in activating other B and C function genes. We molecularly prove that the ectopic expression of SEPALLATA3 is sufficient to ectopically activate APETALA3 and AGAMOUS. Remarkably, plants that constitutively express both SEPALLATA3 and LEAFY developed ectopic petals, carpels and ovules outside of the floral context.  相似文献   

11.
We have identified a novel petunia MADS box gene, PETUNIA FLOWERING GENE (PFG), which is involved in the transition from vegetative to reproductive development. PFG is expressed in the entire plant except stamens, roots and seedlings. Highest expression levels of PFG are found in vegetative and inflorescence meristems. Inhibition of PFG expression in transgenic plants, using a cosuppression strategy, resulted in a unique nonflowering phenotype. Homozygous pfg cosuppression plants are blocked in the formation of inflorescences and maintain vegetative growth. In these mutants, the expression of both PFG and the MADS box gene FLORAL BINDING PROTEIN26 (FBP26), the putative petunia homolog of SQUAMOSA from Antirrhinum, are down-regulated. In hemizygous pfg cosuppression plants initially a few flowers are formed, after which the meristem reverts to the vegetative phase. This reverted phenotype suggests that PFG, besides being required for floral transition, is also required to maintain the reproductive identity after this transition. The position of PFG in the hierarchy of genes controlling floral meristem development was investigated using a double mutant of the floral meristem identity mutant aberrant leaf and flower (alf) and the pfg cosuppression mutant. This analysis revealed that the pfg cosuppression phenotype is epistatic to the alf mutant phenotype, indicating that PFG acts early in the transition to flowering. These results suggest that the petunia MADS box gene, PFG, functions as an inflorescence meristem identity gene required for the transition of the vegetative shoot apex to the reproductive phase and the maintenance of reproductive identity.  相似文献   

12.
To study flower development in the model legume Lotus japonicus, a population of transgenic plants containing a maize transposable element (Ac) in their genome was screened for floral mutants. One mutation named proliferating floral organs (pfo) causes plants to produce a large number of sepal-like organs instead of normal flowers. It segregates as a single recessive Mendelian locus, and causes sterility. Scanning electron microscopy revealed that pfo affects the identity, number and arrangement of floral organs. Sepal-like organs form in the first whorl, and secondary floral meristems are produced in the next whorl. These in turn produce sepal-like organs in the first whorl and floral meristems in the second whorl, and the process is reiterated. Petals and stamens are absent while carpels are either absent or reduced. The pfo phenotype was correlated with the presence of an Ac insertion yielding a 1.6-kb HindIII restriction fragment on Southern blots. Both the mutant phenotype and this Ac element are unstable. Using the transposon as a tag, the Pfo gene was isolated. Conceptual translation of Pfo predicts a protein containing an F-box, with high overall similarity to the Antirrhinum FIMBRIATA, Arabidopsis UNUSUAL FLORAL ORGANS and Pisum sativum Stamina pistilloida proteins. This suggests that Pfo may regulate floral organ identity and meristem determinacy by targeting proteins for ubiquitination.  相似文献   

13.
H Huang  H Ma 《The Plant cell》1997,9(2):115-134
A novel gene that regulates floral meristem activity and controls floral organ number was identified in Arabidopsis and is designated FON1 (for FLORAL ORGAN NUMBER1). The fon1 mutants exhibit normal vegetative development and produce normal inflorescence meristems and immature flowers before stage 6. fon1 flowers become visibly different from wild-type flowers at stage 6, when the third-whorl stamen primordia have formed. The fon1 floral meristem functions longer than does that of the wild type: after the outer three-whorl organ primordia have initiated, the remaining central floral meristem continues to produce additional stamen primordia interior to the third whorl. Prolonged fon1 floral meristem activity also results in an increased number of carpels. The clavata (clv) mutations are known to affect floral meristem activity. We have analyzed the clv1 fon1, clv2 fon1, and clv3 fon1 double mutants. These double mutants all have similar phenotypes, with more stamens and carpels than either fon1 or clv single mutants. This indicates that FON1 and CLV genes function in different pathways to control the number of third- and fourth-whorl floral organs. In addition, to test for possible interactions between FON1 and other floral regulatory genes, we have constructed and analyzed the relevant double mutants. Our results suggest that FON1 does not interact with TERMINAL FLOWER1, APETALA1, APETALA2, or UNUSUAL FLORAL ORGAN. In contrast, normal LEAFY function is required for the expression of fon1 phenotypes. In addition, FON1 and AGAMOUS both seem to affect the domain of APETALA3 function, which also affects the formation of stamen-carpel chimera due to fon1 mutations. Finally, genetic analysis suggests that FON1 interacts with SUPERMAN, which also regulates floral meristem activity.  相似文献   

14.
We have initiated a systematic functional analysis of the MADS box, intervening region, K domain, C domain-type MADS box gene family in petunia. The starting point for this has been a reverse-genetics approach, aiming to select for transposon insertions into any MADS box gene. We have developed and applied a family signature insertion screening protocol that is highly suited for this purpose, resulting in the isolation of 32 insertion mutants in 20 different MADS box genes. In addition, we identified three more MADS box gene insertion mutants using a candidate-gene approach. The defined insertion lines provide a sound foundation for a systematic functional analysis of the MADS box gene family in petunia. Here, we focus on the analysis of Floral Binding Protein2 (FBP2) and FBP5 genes that encode the E-function, which in Arabidopsis has been shown to be required for B and C floral organ identity functions. fbp2 mutants display sepaloid petals and ectopic inflorescences originating from the third floral whorl, whereas fbp5 mutants appear as wild type. In fbp2 fbp5 double mutants, reversion of floral organs to leaf-like organs is increased further. Strikingly, ovules are replaced by leaf-like structures in the carpel, indicating that in addition to the B- and C-functions, the D-function, which specifies ovule development, requires E-function activity. Finally, we compare our data with results obtained using cosuppression approaches and conclude that the latter might be less suited for assigning functions to individual members of the MADS box gene family.  相似文献   

15.
16.
17.
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.  相似文献   

18.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号