首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shui HA  Ho ST  Wang JJ  Wu CC  Lin CH  Tao YX  Liaw WJ 《Proteomics》2007,7(5):796-803
Repeated administration of morphine for treating severe chronic pain may lead to neuroadaptive changes in the spinal cord that are thought to underlie molecular mechanisms of the development of morphine tolerance and physical dependence. Here, we employed a 2-D gel-based proteomic technique to detect the global changes of the spinal cord protein expression in rats that had developed morphine tolerance. Morphine tolerance at the spinal cord level was induced by repeated intrathecal injections of morphine (20 microg/10 microL) twice daily for 5 days and evaluated by measurements of paw withdrawal latencies and maximal possible analgesic effect at day 5. After behavioral tests, the lumbar enlargement segments of spinal cord were harvested and proteins resolved by 2-DE. We found that eight proteins were significantly up-regulated or down-regulated in spinal cord after morphine tolerance development, including proteins involved in targeting and trafficking of the glutamate receptors and opioid receptors, proteins involved in oxidative stress, and cytoskeletal proteins, some of which were confirmed by Western blot analysis. Morphine-induced expressional changes of these proteins in the spinal cord might be involved in the central mechanisms that underlie the development of morphine tolerance. It is very likely that these identified proteins may serve as potential molecular targets for prevention of the development of morphine tolerance and physical dependence.  相似文献   

2.
Recent studies have led to a greater understanding of the behavioral, cellular, and molecular mechanisms underlying opiate tolerance and physical dependence. Behavioral studies have demonstrated that both direct pharmacological effects and the learning of interactions between drug effects and environmental cues are important in these phenomena. Behavioral studies have also revealed that N-methyl-D-aspartate receptors may play a role in their development (or acquisition). Although in early cellular studies no consistent role was found for opioid receptors or endogenous opioid peptides in opiate tolerance and dependence, recent experiments suggest that beta-endorphin, enkephalin, and dynorphin neurons may indeed have a role. Finally, studies at the molecular level suggest that a functional decoupling of opioid receptors from GTP-binding proteins (G proteins) may be important. In this review, we discuss these disparate findings and present a synthesis that shows how they might together contribute to the phenomena of opiate tolerance and physical dependence.  相似文献   

3.

Background

Opioids are the cornerstone of treatment for moderate to severe pain, but chronic use leads to maladaptations that include: tolerance, dependence and opioid-induced hyperalgesia (OIH). These responses limit the utility of opioids, as well as our ability to control chronic pain. Despite decades of research, we have no therapies or proven strategies to overcome this problem. However, murine haplotype based computational genetic mapping and a SNP data base generated from analysis of whole-genome sequence data (whole-genome HBCGM), provides a hypothesis-free method for discovering novel genes affecting opioid maladaptive responses.

Results

Whole genome-HBCGM was used to analyze phenotypic data on morphine-induced tolerance, dependence and hyperalgesia obtained from 23 inbred strains. The robustness of the genetic mapping results was analyzed using strain subsets. In addition, the results of analyzing all of the opioid-related traits together were examined. To characterize the functional role of the leading candidate gene, we analyzed transgenic animals, mRNA and protein expression in behaviorally divergent mouse strains, and immunohistochemistry in spinal cord tissue. Our mapping procedure identified the allelic pattern within the netrin-1 receptor gene (Dcc) as most robustly associated with OIH, and it was also strongly associated with the combination of the other maladaptive opioid traits analyzed. Adult mice heterozygous for the Dcc gene had significantly less tendency to develop OIH, become tolerant or show evidence of dependence after chronic exposure to morphine. The difference in opiate responses was shown not to be due to basal or morphine-stimulated differences in the level of Dcc expression in spinal cord tissue, and was not associated with nociceptive neurochemical or anatomical alterations in the spinal cord or dorsal root ganglia in adult animals.

Conclusions

Whole-genome HBCGM is a powerful tool for identifying genes affecting biomedical traits such as opioid maladaptations. We demonstrate that Dcc affects tolerance, dependence and OIH after chronic opioid exposure, though not through simple differences in expression in the adult spinal cord.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-345) contains supplementary material, which is available to authorized users.  相似文献   

4.
Studies conducted after the development of the rapid filtration assay for opiate receptors, and before the recognition of multiple opioid receptors, failed to detect changes in opioid receptors induced by chronic morphine. Recent experiments conducted in our laboratories were designed to examine the hypothesis that only one of several opioid receptor types might be altered by chronic morphine. Using binding surface analysis and irreversible ligands to increase the "resolving power" of the ligand binding assay, the results indicated that chronic morphine increased both the Bmax and Kd of the opioid receptor complex, labeled with either [3H][D-Ala2,D-Leu5]enkephalin, [3H][D-Ala2-MePhe4,Gly-ol5]enkephalin or [3H]6-desoxy-6 beta-fluoronaltreone. In the present study rats were pretreated with drugs known to attenuate the development of tolerance and dependence [the irreversible mu-receptor antagonist, beta-funaltrexamine (beta-FNA), and the inhibitor of tryptophan hydroxylase, para-chlorophenylalanine], prior to subcutaneous implantation of morphine pellets. The results demonstrated that 1) unlike chronic naltrexone, beta-FNA failed to upregulate opioid receptors and 2) both beta-funaltrexamine and PCPA pretreatment attenuated the chronic morphine-induced increase in the Bmax, but not the Kd, of the opioid receptor complex. These results provide evidence that naltrex-one-induced upregulation of the opioid receptor complex might occur indirectly as a consequence of interactions at beta-funaltrexamine-insensitive opioid receptors and that morphine-induced upregulation (increased Bmax) of the opioid receptor complex is a relevant in vitro marker related to the development of tolerance and dependence. These data collectively support the hypothesis that endogenous antiopiate peptides play an important role in the development of tolerance and dependence to morphine.  相似文献   

5.
Peter W. Schiller 《Life sciences》2010,86(15-16):598-603
Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a µ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed µ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a µ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented.  相似文献   

6.
Spinal acute opioid tolerance remains mechanistically undercharacterized. Expanded clinical use of direct spinal administration of opioids and other analgesics indicates that studies to further understand spinal mechanisms of analgesic tolerance are warranted. Rodent models of spinal administration facilitate this objective. Specifically, acute spinal opioid tolerance in mice presents a plasticity-dependent, rapid, and efficient opportunity for evaluation of novel clinical agents. Similarities between the pharmacology of acute and chronic spinal opioid tolerance, neuropathic pain, and learning and memory suggest that this model may serve as a high through-put predictor of bioactivity of novel plasticity-modifying compounds.  相似文献   

7.
Opioid tolerance and physical dependence in mammals can be rapidly induced by chronic exposure to opioid agonists. Recently, opioid receptors have been shown to interact with the pertussis toxin (PTX)-insensitive Gz (a member of the Gi subfamily), which inhibits adenylyl cyclase and stimulates mitogen-activated protein kinases (MAPKs). Here, we established stable human embryonic kidney 293 cell lines expressing delta-opioid receptors with or without Gz to examine the role of Gz in opioid receptor-regulated signaling systems. Each cell line was acutely or chronically treated with [D-Pen2,D-Pen5]enkephalin (DPDPE), a delta-selective agonist, in the absence or presence of PTX. Subsequently, the activities of adenylyl cyclase, cyclic AMP (cAMP)-dependent response element-binding proteins (CREBs), and MAPKs were measured by determining cAMP accumulation and phosphorylation of CREBs and the extracellular signal-regulated protein kinases (ERKs) 1 and 2. In cells coexpressing Gz, DPDPE inhibited forskolin-stimulated cAMP accumulation in a PTX-insensitive manner, but Gz could not replace Gi to mediate adenylyl cyclase supersensitization upon chronic opioid treatment. DPDPE-induced adenylyl cyclase supersensitization was not associated with an increase in the phosphorylation of CREBs. Both Gi and Gz mediated DPDPE-induced activation of ERK1/2, but these responses were abolished by chronic opioid treatment. Collectively, our results show that although Gz mediated opioid-induced inhibition of adenylyl cyclase and activation of ERK1/2, Gz alone was insufficient to mediate opioid-induced adenylyl cyclase supersensitization.  相似文献   

8.
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.  相似文献   

9.
Morphine was provided to rats in drinking water for 21 days. Profound analgesic tolerance was detected both in hot-plate and tail-flick tests. The density of [3H]DAMGO binding sites increased by 76% in spinal cord membranes due to morphine exposure compared to those in opioid naive animals. Slightly augmented [3H]DAMGO binding was measured in the synaptic plasma membranes, with a concomitant decrease in the microsomal membranes, of morphine tolerant/dependent brains. These observations suggest that the regulation of spinal mu opioid receptors might be different from those in the brain. It is emphasized that the molecular changes underlying tolerance/dependence are influenced by several factors, such as the tissue or subcellular fractions used, besides the obvious importance of the route of drug administration. Results obtained after voluntary morphine intake further support the growing number of experimental data that chronic morphine does not internalize/downregulate the mu opioid receptors in the central nervous system.  相似文献   

10.

The development of tolerance and drug dependence limit the clinical application of opioids for the treatment of severe pain. Glucocorticoid receptors (GRs) are among molecular substrates involved in these processes. Most studies focus on the role of neuronal GR, while the involvement of GR on glial cells is not fully understood. To address this issue, we used a transgenic model of conditional GR knockout mice, targeted to connexin 30-expressing astrocytes, treated with repeated doses of morphine. We observed no difference between control mice and astrocytic GR knockouts in the development of antinociceptive tolerance. Nevertheless, when animals were subjected to precipitated withdrawal, knockouts presented some attenuated symptoms, including jumping. Taken together, our data suggest that hippocampal and spinal astrocytic GRs appear to be involved in opioid withdrawal, and drugs targeting the GR may relieve some symptoms of morphine withdrawal without influencing its antinociceptive properties.

  相似文献   

11.
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [(3)H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [(3)H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A(2561-2565) as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A(2561-2565) abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor-Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.  相似文献   

12.
Electrophysiologic studies of opioid effects on nociceptive types of dorsal root ganglion (DRG) neurons in organotypic cultures have shown that morphine and mostμ, δ, and κ opioid agonists can elicit bimodal excitatory as well as inhibitory modulation of the action potential duration (APD) of these cells. Excitatory opioid effects have been shown to be mediated by opioid receptors that are coupled via Gs to cyclic AMP-dependent ionic conductances that prolong the APD, whereas inhibitory opioid effects are mediated by opioid receptors coupled via Gi/Go to ionic conductuances that shorten the APD. Selective blockade of excitatory opioid receptor functions by low (ca. pM) concentrations of naloxone, naltrexone, etorphine and other specific agents markedly increases the inhibitory potency of morphine or other bimodally acting agonists and attenuates development of tolerance/dependence. These in vitro studies have been confirmed by tail-flick assays showin that acute co-treatment of mice with morphine plus ultra-low-dose naltrexone or etorphine remarkably enhances the antinociceptive potency of morphine whereas chronic co-treatment attenuates development of tolerance and naloxone-precipitated withdrawal-jumping symptoms. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

13.
Mu-opioid receptor activation underpins clinical analgesia and is the central event in the abuse of narcotics. Continued opioid use produces tolerance to the acute effects of the drug and adaptations that lead to physical and psychological dependence. Continued mu-receptor signaling provides the engine for these adaptations, with most evidence suggesting that chronic agonist treatment produces only limited alterations in primary mu-opioid receptor signaling. Here we examine agonist regulation of mu-opioid receptor function, and whether this is altered by chronic treatment. Receptor phosphorylation is thought to be the key initial event in agonist regulation of the mu-opioid receptor, providing a signal for acute receptor desensitization and also subsequent receptor resensitization. Morphine appears to produce qualitatively and quantitatively different mu-receptor phosphorylation than other agonists, but the consequences of this remain obscure, at least in neurons. There is no evidence that agonist-induced mu-opioid receptor phosphorylation changes in chronically morphine-treated animals, although receptor regulation appears to be altered. Thus, as receptor phosphorylation and resensitization appear to maintain continued signaling through the mu-opioid receptor, these two events are crucial in facilitating adaptations to chronic opioid treatment, and the possibility that agonist-specific phosphorylation can contribute to the development of different adaptations remains open.  相似文献   

14.
The aim of this investigation was to study the effect of the doping steroid nandrolone on metamizol and morphine-induced analgesia and tolerance/dependence in rats. Nandrolone per se did not change the basal nociceptive thresholds in both sexes. It diminished the analgesic effect of metamizol in females, revealed by tail flick test, and males, revealed by paw pressure and hot plate tests. In general, the action of nandrolone was to decrease the morphine-induced analgesia in female and male rats. This was strongly manifested by paw pressure and tail flick tests in male, and tail flick tests in female animals. Nandrolone slowed the development of opioid tolerance/dependence. It aggravated the withdrawal syndrome in the females and invigorated aggression in the males. The data provide evidence that anabolic steroid nandrolone might decrease the analgesic action of metamizol or morphine. The doping steroid could modulate opioid tolerance/dependence and the aggressive behavior in a gender dependent manner. The action of nandrolone is most likely due to profound long-term effects on the central nervous system and might be a gateway to addiction of other drugs of abuse.  相似文献   

15.
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).  相似文献   

16.
Guan JS  Xu ZZ  Gao H  He SQ  Ma GQ  Sun T  Wang LH  Zhang ZN  Lena I  Kitchen I  Elde R  Zimmer A  He C  Pei G  Bao L  Zhang X 《Cell》2005,122(4):619-631
Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown. Here we report that direct interaction between protachykinin and DOR is responsible for sorting of DORs into LDCVs, allowing stimulus-induced surface insertion of DORs and DOR-mediated spinal analgesia. This interaction is mediated by the substance P domain of protachykinin and the third luminal domain of DOR. Furthermore, deletion of the preprotachykinin A gene reduced stimulus-induced surface insertion of DORs and abolished DOR-mediated spinal analgesia and morphine tolerance. Thus, protachykinin is essential for modulation of the sensitivity of nociceptive afferents to opioids, and the opioid and tachykinin systems are directly linked by protachykinin/DOR interaction.  相似文献   

17.
Opioid peptides, opioid receptors and mechanism of down regulation   总被引:1,自引:0,他引:1  
Biogenesis of various endogenous opioid peptides, anatomical distribution and the characteristics of multiple receptors with which they interact provides an opportunity for understanding the role of opioid systems and mechanism of opioid tolerance. Cellular and anatomical distribution of opioid receptor and their function is important for identification of neuronal systems and local network involved in initiation of drug action and subsequent development of adaptations resulting from repeated drug use. The details concerning discovery and progress in endogenous opioid peptide research and their distribution in brain have been described in this review. This review also describes opioid receptors, their distribution and mechanism of down regulation, which may be one of the causes for tolerance to opioids. Agonist induced down regulation and recent evidence for involvement of ubiquitin/proteasome system in this process has been discussed.  相似文献   

18.

Background  

Opioid analgesics such as morphine and meperidine have been used to control moderate to severe pain for many years. However, these opioids have many side effects, including the development of tolerance and dependence after long-term use, which has limited their clinical use. We previously reported that mutations in the mu-opioid receptors (MOR) S196L and S196A rendered them responsive to the opioid antagonist naloxone without altering the agonist phenotype. In MORS196A knock-in mice, naloxone and naltrexone were antinociceptive but did not cause tolerance or physical dependence. In this study we delivery this mutated MOR gene into pain related pathway to confirm the possibility of in vivo transfecting MORS196A gene and using naloxone as a new analgesic agent.  相似文献   

19.
Opioid-like peptides mediate analgesia and induce behavioral effects such as tolerance and dependence by ligand-receptor-mediated mechanisms. The classical opioid prohormones can generate several bioactive peptides, and these divergent families of prohormones share a common well conserved ancestral opioid motif (Tyr-Gly-Gly-Phe). Evidence from pharmacological and molecular cloning studies indicates the presence of multiple isoforms of opioid ligands and receptors that are as yet uncharacterized. To identify potential new members we used the opioid motif as an anchor sequence and isolated two distinct isoforms (Xen-dorphins A and B) of an opioid prohormone from Xenopus laevis brain cDNA library. Xen-dorphin prohormones can generate multiple novel opioid ligands distinct from the known members of this family. Both isoforms are present in a wide variety of tissues including the brain. Two potential bioactive peptides, Xen-dorphin-1A and -1B, that were chemically synthesized showed opioid agonist activity in frog and rat brain membranes using a [35S]GTPgammaS assay. Initial radioligand binding experiments demonstrated that Xen-dorphin-1B binds with high affinity to opioid receptor(s) and with potential preference to the kappa-opioid receptor subtype. Cloning of the Xen-dorphin prohormone provides new evidence for the potential presence of other members in the opioid peptide superfamily.  相似文献   

20.
This article reviews sex differences in opiate analgesic and related processes as part of a Special Issue in Hormones and Behavior. The research findings on sex differences are organized in the following manner: (a) systemic opioid analgesia across mu, delta and kappa opioid receptor subtypes and drug efficacy at their respective receptors, (b) effects of the activational and organizational roles of gonadal steroid hormones and estrus phase on systemic analgesic responses, (c) sex differences in spinal opioid analgesia, (d) sex differences in supraspinal opioid analgesia and gonadal hormone effects, (e) the contribution of genetic variance to analgesic sex differences, (f) sex differences in opioid-induced hyperalgesia, (g) sex differences in tolerance and withdrawal-dependence effects, and (h) implications for clinical therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号