首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Transplasma membrane electron transport, as assayed by external ferricyanide reduction, has been related to control of growth and hormone response of cells. Elicitor-stimulated transmembrane NADPH oxidase is important for bacteriocidal superoxide production by neutrophils. Since adriamycin is myelosuppressive and can stimulate superoxide production, its effects on the two redox systems of porcine neutrophil plasma membranes were compared. Adriamycin inhibits transplasma membrane ferricyanide and stimulates superoxide production activated by phorbal myristate acetate (PMA). Ferricyanide reduction in PMA-treated cells becomes resistant to inhibition by adriamycin. These results provide evidence for an independent effect of adriamycin on transmembrane ferricyanide reduction and on superoxide generation.  相似文献   

2.
Changes have been found in the plasma membrane enzyme system which carries out transmembrane electron transport and associated proton transport in Simian virus 40 (SV40) temperature-sensitive A (tsA) mutant-transformed rat pineal cell line, RPN209-1. This cell line was temperature-sensitive for the maintenance of transformation. RPN209-1 cells expressed the transformed phenotype (rapid growth, high cell density, and cloning in soft agar) at the permissive temperature (33 degrees C) and the nontransformed phenotype (slower growth, lower saturation density, and lower cloning efficiency in soft agar) at the nonpermissive temperature (40 degrees C). The reduction of external ferricyanide, hexaammine ruthenium and diferric transferrin was used to measure the transmembrane redox activity. The transformed RPN209-1 cells expressed a lower transmembrane redox activity, which is more sensitive to the antitumor drug adriamycin, when compared to the cells with a nontransformed phenotype. The lower transmembrane redox activity is associated with a decrease in the affinity for ferricyanide and a change in Vmax of the enzyme. Since the transformed cells have 25% lower concentration of NADH, the decrease in Vmax may be partly based on substrate limitation. Ionic strength variation in the assay media shows that the change in activity with transformation is not based on change in cell-surface change. Treatment with neuraminidase, however, indicates that sialic acid is important for enzyme activity, consistent with previous proposals that the transmembrane enzyme is a glycoprotein. The proton extrusion associated with transplasma membrane electron transport is increased in transformed cells relative to the rate of ferricyanide reduction. A relation between proton pumping transplasma membrane electron transport and growth stimulation by external oxidants is discussed.  相似文献   

3.
Transmembrane ferricyanide reduction in carrot cells   总被引:2,自引:0,他引:2  
Carrot cells (Daucus carota) grown in tissue culture are capable of reducing the non-permeable electron acceptor, ferricyanide, with concomitant proton extrusion from the cell. Optimum conditions for transmembrane ferricyanide reduction include a pH of 7.0-7.5 in a medium containing 10 mM each KCl, NaCl and CaCl2. Data are shown to prove that transmembrane ferricyanide reduction is an enzymatic process. It does not depend on the secretion of phenolics from the cell within the time limits of the assay (10 min). The presence of broken cells and cell fragments are excluded on the basis of stimulation or only slight inhibition by mitochondrial inhibitors. However, transmembrane ferricyanide reduction by carrot cells is inhibited about 50% by various glycolysis inhibitors, which are presumed to reduce the internal levels of NADH. Treatment of cells with p-diazoniumbenzenesulfonic acid, a non-permeant membrane modifying agent, also inhibits transmembrane ferricyanide reduction more than 90%. The data presented support the existence of a transplasma membrane redox system in carrot cells.  相似文献   

4.
Cultured carrot cells exhibit transmembrane ferricyanide reduction through a plasma membrane redox system, which may be associated with an iron reduction and uptake system in plant roots. Here we provide evidence for the inhibition of transplasma membrane ferricyanide reduction by four different Ca2+-calmodulin type antagonists, calmidazolium, trifluoperazine, pimozide and fluphenazine. These compounds inhibit in low concentrations (approximately 5-10 microM) in a time-dependent manner. Higher concentrations (50-100 microM) are required to inhibit transmembrane ferricyanide reduction in 10 min rather than in 30 min. The permeable calcium chelator, TMB-8, also inhibits transmembrane ferricyanide reduction in carrot cells. Since the redox system is controlled by hormones, the effects of anticalmodulin agents on hormone response may be mediated through the redox system.  相似文献   

5.
Conjugates of adriamycin crosslinked to transferrin with glutaraldehyde inhibit proliferation of transformed cells. Conjugates of this type inhibit oxidoreductase activity in the plasma membrane of K562 cells, and the inhibition of electron transport is found at concentrations ten times lower than concentrations of free adriamycin which inhibit electron transport and cell growth. The transferrin-adriamycin conjugate inhibits ferricyanide reduction, diferric transferrin reduction and plasma membrane NADH oxidase activity stimulated by transferrin. Activation of proton release from the K562 cells by diferric transferrin also is inhibited by the conjugate, and conjugate kills cells more effectively than free adriamycin. Since the conjugate does not transfer adriamycin to the nucleus, the growth control may be based on inhibition of the transferrin regulated redox system and Na+/H+ antiport activity at the plasma membrane.  相似文献   

6.
Transplasma membrane electron transport from HeLa cells, measured by reduction of ferricyanide or diferric transferrin in the presence of bathophenanthroline disulfonate, is inhibited by low concentrations of adriamycin and adriamycin conjugated to diferric transferrin. Inhibition with the conjugate is observed at one-tenth the concentration required for adriamycin inhibition. The inhibitory action of the conjugate appears to be at the plasma membrane since (a) the conjugate does not transfer adriamycin to the nucleus, (b) the inhibition is observed within three minutes of addition to cells, and (c) the inhibition is observed with NADH dehydrogenase and oxidase activities of isolated plasma membranes. Cytostatic effects of the compounds on HeLa cells show the same concentration dependence as for enzyme inhibition. The adriamycin-ferric transferrin conjugate provides a more effective tool for inhibition of the plasma membrane electron transport than is given by the free drug.  相似文献   

7.
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.  相似文献   

8.
Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.  相似文献   

9.
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.  相似文献   

10.
A transmembrane electron transport system has been studied in HeLa cells using an external impermeable oxidant, ferricyanide. Reduction of ferricyanide by HeLa cells shows biphasic kinetics with a rate up to 500 nmoles/min/g w.w. (wet weight) for the fast phase and half of this rate for the slow phase. The apparentK m is 0.125 mM for the fast rate and 0.24 mM for the slow rate. The rate of reduction is proportional to cell concentration. Inhibition of the rate by glycolysis inhibitors indicates the reduction is dependent on glycolysis, which contributes the cytoplasmic electron donor NADH. Ferricyanide reduction is shown to take place on the outside of cells for it is affected by external pH and agents which react with the external surface. Ferricyanide reduction is accompanied by proton release from the cells. For each mole of ferricyanide reduced, 2.3 moles of protons are released. It is, therefore, concluded that a transmembrane redox system in HeLa cells is coupled to proton gradient generation across the membrane. We propose that this redox system may be an energy source for control of membrane function in HeLa cells. The promotion of cell growth by ferricyanide (0.33–0.1 mM), which can partially replace serum as a growth factor, strongly supports this hypothesis.  相似文献   

11.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

12.
Evidence is presented for a transmembranous NADH-dehydrogenase in human erythrocyte plasma membrane. We suggest that this enzyme is responsible for the ferricyanide reduction by intact cells. This NADH-dehydrogenase is distinctly different from the NADH-cytochromeb 5 reductase on the cytoplasmic side of the membrane. Pretreatment of erythrocytes with the nonpenetrating inhibitor diazobenzene sulfonate (DABS) results in a 35% loss of NADH-ferricyanide reductase activity in the isolated plasma membrane. Since NADH and ferricyanide are both impermeable, the transmembrane enzyme can only be assayed in open membrane sheets with both surfaces exposed, and not in closed vesicles. The transmembrane dehydrogenase has affinity constants of 90 µM for NADH and 125 µM for ferricyanide. It is inhibited byp-chloromercuribenzoate, bathophenanthroline sulfonate, and chlorpromazine.  相似文献   

13.
Retinoic acid inhibition of transplasmalemma diferric transferrin reductase   总被引:1,自引:0,他引:1  
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.  相似文献   

14.
The potential role of pyridine nucleotide oxidation in the energization and/or regulation of membrane transport was examined using sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue. In this system, pyridine nucleotide oxidation, which was enhanced in the presence of ferricyanide, occurred. In the presence or absence of ferricyanide, the oxidation of NADH was several-fold greater than the oxidation of NADPH, indicating that it was the preferred substrate for oxidation in this system. Ferricyanide reduction coupled to NADH oxidation did not require the transmembrane movement of reducing equivalents since ferricyanide incorporated inside the vesicles could not be reduced by NADH added externally to the vesicles, unless the vesicles were made leaky by the addition of 0.05% (v/v) Triton X-100. Using fluorescent probes for the measurement of transmembrane pH gradients and membrane potentials, it was determined that NADH oxidation did not result in the production of a proton electrochemical gradient or have any effect upon the proton electrochemical gradient produced by the plasma membrane H+-ATPase. The oxidation of NADH in the presence of ferricyanide did result in the acidification of the reaction medium. This acidification was unaffected by the addition of Gramicidin D and stimulated by the addition of 0.05% (v/v) Triton X-100, suggesting a scalar (nonvectorial) production of protons in the oxidation/reduction reaction. The results of this study suggest that the oxidation of pyridine nucleotides by plasma membrane vesicles is not related to energization of transport at the plasma membrane or modulation of the activity of the plasma membrane H+-ATPase.  相似文献   

15.
The short-term incubation of HeLa cells in the presence of diferric transferrin or ferricyanide, which are reduced externally by the transplasma membrane reductase, produces a stoichiometric decrease in NADH and increase in NAD+, which is stimulated by insulin. The NADP/NADPH ratio does not change during 15 min incubation with the oxidants. The total pyridine nucleotide pool of HeLa cells is not affected. Incubation with apotransferrin and ferrocyanide, which cannot act as oxidants for transmembrane electron transport, does not change the pyridine nucleotide concentrations in the cells. Our results show that NADH can act as the internal electron donor for the reduction of external oxidants by the transmembrane reductase. It appears that oxidation of NADH by the transmembrane electron transport using ferricyanide or iron transferrin as external electron acceptors is sufficient to stimulate growth in HeLa cells.  相似文献   

16.
Both respiratory-competent and respiratory-deficient yeast cells reduce external ferricyanide. The reduction is stimulated by ethanol and inhibited by the alcohol dehydrogenase inhibitor, pyrazole. The reduction of ferricyanide is not inhibited by inhibitors of mitochondrial or microsomal ferricyanide reduction. Cells in exponential-phase growth show a much higher rate of ferricyanide reduction. The reduction of ferricyanide is accompanied by increased release of protons by the yeast cells. We propose that the ferricyanide reduction is carried out by a transmembrane NADH dehydrogenase.  相似文献   

17.
18.
NADH diferric transferrin reductase in liver plasma membrane   总被引:6,自引:0,他引:6  
Evidence is presented that rat liver plasma membranes contain a distinct NADH diferric transferrin reductase. Three different assay procedures for demonstration of the activity are described. The enzyme activity is highest in isolated plasma membrane, and activity in other internal membranes is one-eighth or less than in plasma membrane. The activity is inhibited by apotransferrin and antitransferrin antibodies. Trypsin treatment of the membranes leads to rapid loss of the transferrin reductase activity as compared with NADH ferricyanide reductase activity. Erythrocyte plasma membranes, which lack transferrin receptors, show no diferric transferrin reductase activity, although NADH ferricyanide reductase is present. The transferrin reductase is inhibited by agents that inhibit diferric transferrin reduction by intact cells and is activated by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfate) detergent. Inhibitors of mitochondrial electron transport have no effect on the activity. We propose that the NADH diferric transferrin reductase in plasma membranes measures the activity of the enzyme that causes the reduction of diferric transferrin by intact cells. This transmembrane electron transport system requires the transferrin receptor for diferric transferrin reduction. Because the transmembrane electron transport has been shown to stimulate cell growth, the reduction of diferric transferrin at the cell surface may be an important function for diferric transferrin in stimulation of cell growth, in addition to its role in iron transport.  相似文献   

19.
Transplasma membrane redox stimulates HeLa cell growth   总被引:2,自引:0,他引:2  
Impermeable ferricyanide stimulates the growth of HeLa cells in absence of fetal bovine serum or other growth factors. A series of impermeable oxidants with redox potentials down to -125 mV stimulate equivalent growth. All of these oxidants are reduced by the transplasma membrane electron transport system. Oxidants with redox potentials below -175 mV are not reduced by the transmembrane electron transport and do not stimulate growth. Insulin which stimulates growth in absence of serum also stimulates transmembrane ferricyanide reduction. Ferricyanide increases growth in presence of insulin. Antitumor drugs, which inhibit HeLa cell growth, inhibit the transplasma membrane redox system. Transplasma membrane electron transport is accompanied by proton release from HeLa cells.  相似文献   

20.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号