首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication sites and morphological steps of chromosomal condensation during S period in the nuclei of Crepis capillaris root tip cells have been studied with light and electron microscopic autoradiography. From light microscopic autoradiographic observations, the S period can be divided with three portions, early S, mid S, and late S period. Labelled nuclei for each portion of the S period have also been found by using electron microscopic autoradiography. With electron microscopic autoradiography it has been found that in early, mid, and late S period, the replication sites are distributed in the electron transparent regions, interspersed with dense chromatin masses of variable size which are distributed throughout the nucleus. The time-dependent behavior of the label indicates that when compared with either mid or early replicated DNA, a majority of this chromatin, which contains predominantly late replicated DNA, is the earliest chromatin to be organized into the condensed chromatin. They are organized into the condensed chromatin within 15 min after the termination of replication.  相似文献   

2.
Summary Anoxic UVA irradiation (300–400 nm) of cells in prophase induced their chromatin to return to the interphase decondensed form when their DNA was unifiliarly bromosubstituted. This immediate effect may be related to the incompetence of chromatin with Br-DNA when irradiated to bind proteins which induce its condensation. Hence, inhibition of protein synthesis also causes chromatin decondensation in cells with native DNA.Bromosubstitution of DNA sequences replicated in the last two thirds of the S period was as efficient as bromosubstitution of the whole genome for such an effect to take place in a nucleus. On the other hand, the irradiation accelerated the entrance into prophase of those cells in which only sequences replicated in the first third of S were bromosubstituted. Thus, early replicating loci may act as attachment sites for binding proteins preventing the induction of chromatin condensation. DNA bromosubstitution during portions of S was carried out in synchronous cell populations labelled as binucleate by a previous short caffeine treatment, inAllium cepa L. root meristems.Abbreviations Br-DNA bromosubstituted DNA - BrUdR 5-bromodeoxyuridine - UVA 300–400 nm wavelengths light - p 34 34 kDa protein codified by genecdc 2 inS. pombe or its analogues in other species  相似文献   

3.
In the multinucleate cells induced in Allium cepa L. meristems, the nuclei surrounded by the largest cytoplasm environment complete replication earlier (advanced nuclei), but have a longer G2, than the others (delayed nuclei). Thus, all nuclei break down the nuclear envelope and start metaphase simultaneously. The present report shows that this synchronization relies on a checkpoint mechanism. When completion of replication was prevented in the delayed nuclei (due to in vivo 5-aminouracil feeding initiated when the advanced nuclei were already in G2), the metaphase was also further delayed in the advanced ones. In turn, some of the delayed nuclei overrode the G2 checkpoint (adaptation) and entered into mitosis with broken chromatids (Del Campo et al., 1997). Anoxic UVA (313 nm) irradiation apparently prevents the binding of regulatory proteins to Br-DNA. The present report shows that late replicating sequences are the targets of the checkpoint signal produced by the still replicating nuclei. This signal delays metaphase in the advanced nuclei, whose DNA is already fully replicated. Thus, when the already replicated sequences of late replicating DNA was modified in the advanced nuclei by bromosubstitution followed by anoxic UVA irradiation, they entered into mitosis without any delay, ignoring the inhibitory signals produced by the still replicating nuclei.  相似文献   

4.
The murine immunoglobulin heavy-chain (Igh) locus provides an important model for understanding the replication of tissue-specific gene loci in mammalian cells. We have observed two DNA replication programs with dramatically different temporal replication patterns for the Igh locus in B-lineage cells. In pro- and pre-B-cell lines and in ex vivo-expanded pro-B cells, the entire locus is replicated early in S phase. In three cell lines that exhibit the early-replication pattern, we found that replication forks progress in both directions through the constant-region genes, which is consistent with the activation of multiple initiation sites. In contrast, in plasma cell lines, replication of the Igh locus occurs through a triphasic pattern similar to that previously detected in MEL cells. Sequences downstream of the Igh-C alpha gene replicate early in S, while heavy-chain variable (Vh) gene sequences replicate late in S. An approximately 500-kb transition region connecting sequences that replicate early and late is replicated progressively later in S. The formation of the transition region in different cell lines is independent of the sequences encompassed. In B-cell lines that exhibit a triphasic-replication pattern, replication forks progress in one direction through the examined constant-region genes. Timing data and the direction of replication fork movement indicate that replication of the transition region occurs by a single replication fork, as previously described for MEL cells. Associated with the contrasting replication programs are differences in the subnuclear locations of Igh loci. When the entire locus is replicated early in S, the Igh locus is located away from the nuclear periphery, but when Vh gene sequences replicate late and there is a temporal-transition region, the entire Igh locus is located near the nuclear periphery.  相似文献   

5.
Nuclear DNA is looped by attachment to a matrix or cage. As this cage is the site of DNA synthesis, sequences in the loops must attach before they are replicated. We have tested whether sequences which initiate replication are usually out in the loop and attach only during S phase or whether they are attached but quiescent during most of the cell-cycle. Sequences which permit plasmids to replicate autonomously in yeast cells (ARS's) are strong candidates for initiating sequences. Four different human ARS's all map remote from attachment points to the HeLa nuclear cage. In addition a potential terminus of replication is also remote from the cage. We conclude that sequences involved in initiation are usually out in the loop and that DNA synthesis is initiated by their attachment.  相似文献   

6.
The interaction of the origin recognition complex (ORC) with replication origins is a critical parameter in eukaryotic replication initiation. In mammals the ORC remains bound except during mitosis, thus the localization of ORC complexes allows localization of origins. A monoclonal antibody that recognizes human ORC1 was used to localize ORC complexes in populations of human MOLT-4 cells separated by cell cycle position using centrifugal elutriation. ORC1 staining in cells in early G1 is diffuse and primarily peripheral. As the cells traverse G1, ORC1 accumulates and becomes more localized towards the center of the nucleus, however around the G1/S boundary the staining pattern changes and ORC1 appears peripheral. By mid to late S phase ORC1 immunofluorescence is again concentrated at the nuclear center. During anaphase, ORC1 staining is localized mainly in the pericentriolar regions. These findings suggest that concerted movements of origin DNA sequences in addition to the previously documented assembly and disassembly of protein complexes are an important aspect of replication initiation loci in eukaryotes.  相似文献   

7.
It is still unclear what nuclear components support initiation of DNA replication. To address this issue, we developed a cell-free replication system in which the nuclear matrix along with the residual matrix-attached chromatin was used as a substrate for DNA replication. We found out that initiation occurred at late G1 residual chromatin but not at early G1 chromatin and depended on cytosolic and nuclear factors present in S phase cells but not in G1 cells. Initiation of DNA replication occurred at discrete replication foci in a pattern typical for early S phase. To prove that the observed initiation takes place at legitimate DNA replication origins, the in vitro synthesized nascent DNA strands were isolated and analyzed. It was shown that they were enriched in sequences from the core origin region of the early firing, dihydrofolate reductase origin of replication ori-beta and not in distal to the origin sequences. A conclusion is drawn that initiation of DNA replication occurs at discrete sub-chromosomal structures attached to the nuclear matrix.  相似文献   

8.
Mapping replicational sites in the eucaryotic cell nucleus   总被引:52,自引:17,他引:35       下载免费PDF全文
We have used fluorescent microscopy to map DNA replication sites in the interphase cell nucleus after incorporation of biotinylated dUTP into permeabilized PtK-1 kangaroo kidney or 3T3 mouse fibroblast cells. Discrete replication granules were found distributed throughout the nuclear interior and along the periphery. Three distinct patterns of replication sites in relationship to chromatin domains in the cell nucleus and the period of S phase were detected and termed type I (early to mid S), type II (mid to late S) and type III (late S). Similar patterns were seen with in vivo replicated DNA using antibodies to 5-bromodeoxyuridine. Extraction of the permeabilized cells with DNase I and 0.2 M ammonium sulfate revealed a striking maintenance of these replication granules and their distinct intranuclear arrangements with the remaining nuclear matrix structures despite the removal of greater than 90% of the total nuclear DNA. The in situ prepared nuclear matrix structures also incorporated biotinylated dUTP into replication granules that were indistinguishable from those detected within the intact nucleus.  相似文献   

9.
Cyclin-dependent kinases (Cdk) are essential for promoting the initiation of DNA replication, presumably by phosphorylating key regulatory proteins that are involved in triggering the G1/S transition. Human Cdc6 (HsCdc6), a protein required for initiation of DNA replication, is phosphorylated by Cdk in vitro and in vivo. Here we report that HsCdc6 with mutations at potential Cdk phosphorylation sites was poorly phosphorylated in vitro by Cdk, but retained all other biochemical activities of the wild-type protein tested. Microinjection of mutant HsCdc6 proteins into human cells blocked initiation of DNA replication or slowed S phase progression. The inhibitory effect of mutant HsCdc6 was lost at the G1/S transition, indicating that phosphorylation of HsCdc6 by Cdk is critical for a late step in initiation of DNA replication in human cells.  相似文献   

10.
11.
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control.  相似文献   

12.
Nascent DNA that was pulse-labelled with [3H]thymidine for 8 min in asynchronous Chinese hamster ovary cells contained a higher proportion of moderately repeated nucleotide sequences than did either nascent DNA pulse-labelled for 60 min or 14C-labelled parental DNA. The thymine pool equilibration time for moderately repeated sequences, which was found to be about one-half that for highly repeated and unique sequences, accounts for the high proportion of moderately repeated sequences labelled during short pulses and suggests that these sequences are replicated by a different mechanism than are other sequences. In synchronous cells, this difference in thymidine labelling was characteristic of early S and late S but not of mid S cells, suggesting that a higher proportion of moderately repeated nucleotide sequences is replicated in early and late S phase than in mid S.  相似文献   

13.
The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation is synchronized Chinese hamster ovary cells. The initiation and elongation process of DNA synthesis were radioresistant at the G1/S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G1/S boundary could be inhibited by a hyperthermia treatment (43 degrees C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis.  相似文献   

14.
Chinese hamster ovary (CHO) cells in vitro were treated with HgCl2 at various stages in the cell cycle and the effects of this chemical on cell survival, DNA replication, and cell division were observed. In terms of survival the early G1 cells were the most sensitive to treatment, followed by late G1 and early S, while mid S and late S-G2 treated cells were the least sensitive. Treatment with HgCl2 also resulted in reduced rates of DNA replication and delays in cell division. The early G1 treated cells showed substantially reduced rates of DNA replication followed by 4--5 h division delay. The early S and late S-G2 treated cells had some reduction in their rates of DNA replication followed by corresponding division delay of 2.5 h in the early S treated cells and 1 h in the late S-G2 treated cells.  相似文献   

15.
A DNA replication program, which ensures that the genome is accurately and wholly replicated, is established during G1, before the onset of S phase. In G1, replication origins are licensed, and upon S phase entry, a subset of these will form active replisomes. Tight regulation of the number of active replisomes is crucial to prevent replication stress-induced DNA damage. TICRR/TRESLIN is essential for DNA replication initiation, and the level of TICRR and its phosphorylation determine the number of origins that initiate during S phase. However, the mechanisms regulating TICRR protein levels are unknown. Therefore, we set out to define the TICRR/TRESLIN protein dynamics throughout the cell cycle. Here, we show that TICRR levels are high during G1 and dramatically decrease as cells enter S phase and begin DNA replication. We show that degradation of TICRR occurs specifically during S phase and depends on ubiquitin ligases and proteasomal degradation. Using two targeted siRNA screens, we identify CRL4DTL as a cullin complex necessary for TICRR degradation. We propose that this mechanism moderates the level of TICRR protein available for replication initiation, ensuring the proper number of active origins as cells progress through S phase.  相似文献   

16.
Time of replication of ARS elements along yeast chromosome III.   总被引:33,自引:16,他引:17       下载免费PDF全文
The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号