首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The present report describes high yield enzymatic radio-iodination of the apical and basal-lateral plasma membranes of toad bladder epithelium, by a procedure that does not breach the functional integrity of the epithelium, as assessed by the basal and vasopressin-sensitive short-circuit current (SCC). Restriction of the label to the membrane surface was ascertained by light and electron-microscopic autoradiographs. On the apical surface, the grains were over the glycocalyx and the plasma membrane. Analysis of the labeled glycocalyx by agarose gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), as well as enzymatic and pH-dependent hydrolysis indicated that the glycocalyx is a trichloro-acetic acid-soluble macromolecular complex of high molecular weight composed of a peptide moiety attached to large prosthetic groups (presumably carbohydrates) by O-glycosidic bonds. Analysis of the labeled apical plasma membrane components by agarose gel filtration and SDS-PAGE disclosed the presence of six major species of apparent molecular weights: 23,000, 28,000, 37,000, 44,000, 68,000, and 95,000. More than half of the membrane-associated radio-iodine was in two bands of molecular weights 37,000 and 44,000.Concentrations of vasopressin and cyclic AMP sufficient to increase the SCC significantly did not modify the extent of membrane labeling or the distribution of the label among the apical membrane components (presumably proteins) as assessed by SDS-PAGE. Iodination in the presence of amiloride inhibited incorporation but did not change the pattern of the distribution of the label among the components resolved by SDS-PAGE.Iodination of basal-lateral plasma membranes, at a yield comparable to that obtained with apical labeling, was attained after about 30 min of exposure of the intact bladder to the labeling solutions. Approximately 25% of the basal-lateral labeling was lost when the epithelial cells were harvested after collagenase treatment, implying that some iodination of the basement membrane had taken place. Less than 10% of iodination of the apical or basal-lateral surfaces was accounted for by lipid-labeling. Analysis of the labeled apical and basal-lateral species by enzymatic digestion and thin layer chromatography disclosed that virtually all the radioactivity was present as mono-iodotyrosine (MIT).  相似文献   

2.
Electron microscope autoradiography was used to detect the incorporation of 3H-fucose into glycoproteins of toad bladder epithelial cells. After short exposure to 3H-fucose, without a chase period, the Golgi regions of all four cell types were labeled. When exposure to 3H-fucose was followed by chase periods (1,3,4 and 6 hours) the apical and basal-lateral plasma membranes of granular cells were heavily labeled. Apical granules and the cytoplasm of granular cells were also labeled, suggesting that they both provide the means for glycoprotein transfer from the Golgi to the plasma membranes. The heaviest labeling in mitochondria-rich cells, after the 1- and 3-hour chase periods, was over the apical tubules, although the apical and basal-lateral plasma membranes were also heavily labeled. After 4- and 6-hour chases, the labeling of the apical tubules decreased, whereas the labeling of the plasma membranes increased, strongly suggesting that in these cells apical tubules play a major role in the transfer of glycoproteins from the Golgi to the plasma membrane. Our results demonstrate that the route of 3H-fucose incorporation into plasma membrane glycoproteins and the rate of glycoprotein synthesis and breakdown are not the same in the two major epithelial cell types in toad bladder.  相似文献   

3.
Summary The electron-dense granules that lie just below the apical plasma membrane of granular epithelial cells of toad urinary bladder contribute glycoproteins to that apical membrane. Also, exocytosis of granules (and tubules) elicited by antidiuretic hormone potentially doubles that apical surface, during the same period the transport changes characteristic of the hormonal response occur.Granules separated from other membrane systems of the cells provide the material to assess the importance of the granules as glycocalyx precursors and in hormone action. We used isosmotic media to effect preliminary separations by differential centrifugation. Then granules were isolated by centrifugation on self-forming gradients of Percoll of decreasing hypertonicity.We find qualitative and quantitative changes in protein composition and enzymic activities in the isolated fractions. The primary criterion for granule purification was electron microscopic morphology. In addition, polypeptide species found in the granule fraction are limited in number and quantity. The granules are enzymically and morphologically not lysosomal in nature. Granules may provide the glycoproteins of the apical glycocalyx but they differ from the isolated plasma membrane fraction enzymically, in protein composition and in proportion of esterified cholesterol.We conclude that the granules are not average plasma membrane precursors. Their role in the membrane properties of the toad urinary bladder may now be evaluated by characterizing permeability and other properties of the isolated organelles.  相似文献   

4.
《Molecular membrane biology》2013,30(3-4):177-185
A simple, efficient procedure is described for the preparative scale isolation of basal-lateral membranes from the rat intestinal epithelium. The intestinal mucosa was mildly homogenized and soluble protein and RNA were separated from the homogenate by differential centrifugation. The basal-lateral membranes were then separated from nuclei, mitochondria, and brush border membranes by differential centrifugation in a medium close to the equilibrium density of the basal-lateral membranes. Final purification of the basal-lateral membranes was achieved on a linear density gradient in a high-capacity zonal rotor. The final product (usually at least 40 mg protein) represented a 34% yield of basal-lateral membranes purified 18-fold with respect to protein, 26-fold with respect to brush border membranes, and 53-fold with respect to mitochondria.  相似文献   

5.
A simple, efficient procedure is described for the preparative scale isolation of basal-lateral membranes from the rat intestinal epithelium. The intestinal mucosa was mildly homogenized and soluble protein and RNA were separated from the homogenate by differential centrifugation. The basal-lateral membranes were then separated from nuclei, mitochondria, and brush border membranes by differential centrifugation in a medium close to the equilibrium density of the basal-lateral membranes. Final purification of the basal-lateral membranes was achieved on a linear density gradient in a high-capacity zonal rotor. The final product (usually at least 40 mg protein) represented a 34% yield of basal-lateral membranes purified 18-fold with respect to protein, 26-fold with respect to brush border membranes, and 53-fold with respect to mitochondria.  相似文献   

6.
Summary A procedure is described for the preparation of a membrane fraction enriched in basal-lateral plasma membranes from gastric mucosa. Gastric glands isolated from rabbit were employed as starting material, greatly reducing contamination from nonglandular cell types. The distribution of cellular components during the fractionation procedure was monitored with specific marker enzymes. (Na++K+)-ATPase, ouabain-sensitive K+-stimulatedp-nitrophenyl-phosphatase and histamine-stimulated adenylate cyclase were used as markers for basal-lateral membranes. These three markers were similarly distributed during both differential and equilibrium density gradient centrifugation. The enriched membrane fraction contained more than 30% of the total initial activities of the three basal-lateral membrane markers which were purified better than 11-fold with respect to protein. (Na++K+)-ATPase activity was resolved from the activities of acid phosphatase, pepsin, Mg2+-ATPase, cytochromec oxidase, NADPH-cytochromec reductase, glucose-6-phosphatase, (K++H+)-ATPase, DNA and RNA.  相似文献   

7.
Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitro-en decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230, 000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

8.
Tubular structures are released from cells of Cytophaga columnaris after lysis of the cells. To determine the nature of these tubules, they were purified and their composition was determined. Tubules were isolated after treating cell lysates with 1.0% sodium dodecyl sulfate at pH 8.1, which solubilizes all structural components except tubules. Plasma membranes from the same organism were isolated by discontinuous sucrose gradient centrifugation of lysed cells. Both tubules and membranes are composed of lipids and proteins. Lipids extracted from tubules and plasma membranes produced similar patterns when examined by thin-layer chromatography. Proteins solubilized from membranes were separated into 14 bands by polyacrylamide gel electrophoresis, whereas those solubilized from tubules separated into only 5 bands. The presence of lipids in tubules from C. columnaris supports the idea that they are derived from membranes of intact cells. In this respect they are similar to tubules produced by cells of Clostridium botulinum and different from other tubular structures ("rhapidosomes") found in cells of Saprospira grandis.  相似文献   

9.
A fast and reproducible purification procedure for rabbit skeletal muscle plasma membrane is described. Each step was monitored by determination of tetrodotoxin, ouabain and insulin receptors. A ouabain-sensitive K+-stimulated and a Ca2+-dependent phosphatases, probably identical to, respectively the (Na+-K+) and Ca2+-ATPases, were also evaluated. All plasma membrane receptors and the ouabain-sensitive activity accumulated in the lightest fraction separated by sucrose gradient centrifugation (peak at 18% sucrose; purification from crude homogenate, 30-fold).  相似文献   

10.
A procedure for cellular fractionation and preparation of plasma membrane from a Burkitt's lymphoma cell line is described. This procedure involves homogenization with a Polytron in buffered isotonic sucrose, and separation of cellular fractions by differential and isopycnic centrifugation in sucrose. The isolated plasma membrane fraction contains 44% of the cellular cholesterol, 50% of the ouabain-sensitive (Na+ + K+)-ATPase activity, 43% of the γ-glutamyltranspeptidase activities and 16% of the phospholipid. This fraction contains only 3% of cellular protein and is contaminated with less than 4% of the total cellular activities of microsomal, lysosomal, mitochondrial, Golgi and soluble marker enzymes. The cholesterol : phospholipid molar ratio of the crude plasma membrane is 0.56. The membranes in this fraction are in the form of vesicles. Further purification of plasma membrane is achieved by sucrose density gradient centrifugation and results in a 25- to 30-fold enrichment of plasma membrane markers. Plasma membrane markers band in these gradients between 1.10 and 1.15 g/cm3.The distribution patterns in the cell fractions of 18 cellular constituents are quantitatively determined. Most constituents are found to distribute in a fashion consistent with the results obtained in other systems. Thymidine-5′-phosphodiesterase (phosphodiesterase I), esterase, nucleoside diphosphatase and glucose-6-phosphatase, however, are shown to be poor markers of membrane fractions in this system.Lactoperoxidase-catalyzed iodination was used to identify several plasma membrane proteins which are exposed at the surface. After separation of labeled polypeptides by sodium dodecyl sulfate gel electrophoresis, the predominant labeled protein was identified as the heavy chain of IgM. Several lesser labeled proteins were observed.  相似文献   

11.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

12.
We have separated and Isolated the plasma membranes and mesosomal vesicles of Staphylococcus aureus ATCC 6538P. Cells were grown aerobically in Difco synthetic AOAC broth, washed and resuspended in hypertonic buffer (3.45 M NaC1) containing 0.02 M MgSO4. Cell wall was removed by treatment with lytic enzyme from S. aureus, strain LS. The protoplasts were collected by centrifugation at 10,000 × g for 1 hour, resuspended in hypotonic buffer containing 0.02 M MgSO4 and lysed. The resultant plasma membranes were washed and centrifuged on a 60tr>75Z sucrose density gradient at 55,000 × g for 15 hours. Gradient patterns showed two bands of membranes. Crude mesosomes were obtained from the 10,000 × g supernatant fractions by centrifugation at 100,000 × g for 2 hours. The reddish-brown gelatinous pellet, which consisted of mesosomal vesicles and a few ribosomes, was washed and centrifuged on a 60 to 85% sucrose density gradient at 100,000 × g for 15 hours. Gradient patterns produced two bands of mesosomal vesicles. The homogeneity of the plasma membranes and mesosomal vesicles was determined by electron microscopy and chemical analyses.  相似文献   

13.
An azide- and vanadate-insensitive, N-ethylmaleimide-sensitive ATPase has been partially purified from a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. The properties of the membrane-bound ATPase activity were identical to those of the ATPase activity of highly purified goblet cell apical membranes (Wieczorek, H., Wolfersberger, M. G., Cioffi, M., and Harvey, W. R. (1986) Biochim. Biophys. Acta 857, 271-281). 90% of the azide- and vanadate-insensitive ATPase activity was solubilized by C12E10, leaving 90% of the contaminating azide-sensitive mitochondrial ATPase activity in the pellet after centrifugation at 100,000 x g for 1 h. After discontinuous sucrose gradient centrifugation of the supernatant at 220,000 x g for 1 h nearly all of the azide- and vanadate-insensitive ATPase activity was found in the 30% sucrose fraction without contaminating azide- or vanadate-sensitive ATPase activity. Two prominent bands with relative molecular masses (Mr) of about 600,000 and 900,000, both displaying azide-insensitive and N-ethylmaleimide-sensitive ATPase activity, were found in native microgradient polyacrylamide gel electrophoresis of the 30% sucrose fraction. The two bands could not be separated by anion exchange chromatography. Denaturation of both bands resulted in the same polypeptide pattern (five major bands with Mr 70,000, 57,000, 46,000, 29,000 and 17,000) in sodium dodecylsulfate-polyacrylamide gel electrophoresis, indicating that they represented oligomers of the same protein unit. Substrate and inhibitor specificities of the partially purified ATPase were similar to those of the membrane-bound ATPase activity, whereas salt selectivity differed partly. Altogether, structural and functional properties of the ATPase strongly resemble those of vacuolar-type ATPases.  相似文献   

14.
Envelope membranes were isolated by sucrose density gradient floatation centrifugation from the homogenate of cyanelles prepared from Cyanophora paradoxa. Two yellow bands were separated after 40 h of centrifugation. The buoyant density of one of the two fractions (fraction Y2) coincided with that of inner envelope membranes of spinach or plasma membranes of cyanobacteria. The other yellow fraction (fraction Y1) migrated to top of sucrose-gradient even at 0% sucrose. Pigment analysis revealed that the heavy yellow fraction was rich in zeaxanthin while the light fraction was rich in β-carotene, and the both fractions contained practically no chlorophylls. Another yellow fraction (fraction Y3) was isolated from the phycobiliprotein fraction, which was the position where the sample was placed for gradient centrifugation. Its buoyant density and absorption spectra were similar to outer membranes of cyanobacteria. We have assigned fractions Y2 and Y3 as inner and outer envelope membrane fractions of cyanelles, respectively. Protein compositions were rather different between the two envelope membranes indicating little cross-contamination among the fractions. H. Koike and Y. Ikeda contributed equally.  相似文献   

15.
Plasma membranes were isolated from the cultured Sertoli cells of 20-day-old rat testes by differential centrifugation and sucrose density fractionation. The distribution and purity of subcellular components was determined by marker enzyme analysis of gradient fractions. The plasma membrane fraction showed an enrichment in two plasma membrane marker enzymes, 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase-specific activities, of 9- and 23-fold, respectively. Forty-two percent and 52% of the total cellular 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase activities, respectively, were found in the membrane fraction. The protein yield of plasma membrane was approximately 6% of the total cellular protein. Two-dimensional polyacrylamide gel electrophoresis was used to compare [35S] methionine- and [3H] glucosamine-labeled membrane proteins. The incorporation of [35S] methionine and [3H] glucosamine was increased in several proteins when the cultured Sertoli cells were treated with follicle-stimulating hormone, insulin, retinol, and testosterone. Isolated Sertoli cell membranes contained a membrane-associated form of plasminogen activator. Analysis of this plasminogen activator demonstrated that the membrane-associated enzyme existed primarily as a single 38,000-40,000-Mr form.  相似文献   

16.
Endoplasmic reticulum membranes stripped of attached ribosomes were isolated from homogenates of germinating castor bean (Ricinus communis L.) endosperm by sucrose density gradient centrifugation. The isolated endoplasmic reticulum fraction was further separated into two major membrane subfractions by centrifugation on a flotation gradient. Both subfractions appeared to be derived from the endoplasmic reticulum inasmuch as they share several enzymic markers including cholinephosphotransferase, NADH-cytochrome c reductase, and glycoprotein fucosyl-transferase and phase separation of membrane polypeptides using Triton X-114 revealed a striking similarity in both their hydrophilic and hydrophobic protein components. The endoplasmic reticulum membrane subfractions contain glycoproteins which were readily labeled by incubating intact endosperm tissue with radioactive sugars prior to fractionation.

Castor bean endosperm endoplasmic reticulum apparently exhibits a degree of enzymic heterogeneity, however, since the enzymes responsible for the synthesis of dolicholpyrophosphate N-acetylglucosamine and dolicholmonophosphate mannose together with their incorporation into the oligosaccharide-lipid precursor of protein N-glycosylation were largely recovered in a single endoplasmic reticulum subfraction.

  相似文献   

17.
Basal-lateral membranes from the renal cortex of the rabbit were isolated by sucrose gradient centrifugation in a zonal rotor which allows for a large-scale preparation of these membranes. A heterogeneous population of membranes (P4) which contained 29% of the (Na+ + K+)-ATPase found in the homogenate of renal cortex was prepared by differential centrifugation. When pellet P4 was subjected to centrifugation in a sucrose gradient the activity of (Na+ + K+)-ATPase, a marker for basal-lateral membranes, could be separated from enzymatic markers of other organelles. The specific activity of (Na+ + K+)-ATPase was enriched 12-fold at a density of 1.141 g/cm3. Membranes (P alpha) contained in the (Na+ + K+)-ATPase-rich fractions consisted primarily of closed vesicles which exhibited probenecid inhibitable transport of rho-aminohippurate. These membranes did not exhibit Na+-dependent, phlorizin-inhibitable D-glucose transport. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins from P alpha revealed at least six major protein bands with molecular weights of 91000, 81000, 73000, 65000, 47000 and 38000. A small fraction of total alkaline phosphatase found in the homogenate was found in pellet P4. Membranes containing this alkaline phosphatase activity were distributed widely over the gradient, with peak activity found at a density of 1.141 g/cm3. In contrast, when brush borders were subjected to gradient centrifugation under the same conditions as P4, alkaline phosphatase was found in a narrow distribution, with peak activity at a density of 1.158 g/cm3. The principle subcellular localization of the alkaline phosphatase found in P4 could not be determined unambiguously from the data, but the activity did not seem to be primarily associated with classical brush borders.  相似文献   

18.
Two methods are introduced for preparing plasma membranes from Giardia lamblia trophozoites. Isolated membranes were purified by centrifugation on either a sucrose step-gradient or a self-generated Percoll gradient, where they band at a density of approximately 1.04 g ml-1. In pure fractions, membranes formed vesicles or extensive sheets. Electron microscope profiles show that they are asymmetric with a thin filamentous coat on one side. Membrane proteins were resolved by SDS/PAGE. They included a major component of apparent Mr 75,000 (75 kDa), and additional bands detectable by gel staining at 58 kDa, 54 kDa, 32 to 38 kDa (5 bands), 22 kDa, and 15 to 20 kDa. To probe the surface location of proteins, gels were also prepared from Giardia cells that were surface radio-iodinated using the immobilised catalyst IODOGEN. The 75 kDa membrane protein was strongly labelled in the corresponding autoradiograph, also the bands at 58 kDa and 54 kDa, the 22 kDa polypeptide, and some faint bands not resolved in the isolated membrane preparations. The set of close-running bands at 32 to 38 kDa were not iodinated. The labelled 58 kDa and 54 kDa proteins comigrated with alpha and beta-tubulins. Controls showed that cytoskeleton and flagellar tubulins were not iodinated in this experiment, indicating that the labelled tubulin is surface-derived. The principal approximately 75 kDa surface protein identified in isolated membranes probably corresponds to an iodinatable and antibody-precipitated "82 kDa" antigen reported previously.  相似文献   

19.
Summary A secretory granule fraction has been isolated from rat parotid by discontinuous gradient centrifugation using hyperosmotic sucrose-Ficoll solutions of low ionic strength. The secretion granule fraction comprises 25% of the total tissue -amylase activity and is judged to be of high purity, both morphologically and by its low level of contamination by enzyme activities associated with other organelles.Secretion granules were lysed by capitalizing on their lability in KCl-containing media, and the low density granule membranes were separated from residual organelle and soluble contaminants by flotation in a sucrose gradient. Residual, poorly extractable secretory contaminants of the granule membrane subfraction were selectively removed by a saponin- (10 g/ml) Na2SO4 (0.3m) wash, apparently with negligible disruption of granule membrane structure. Based on detailed consideration of the extent of contamination by residual mitochondria and incompletely removed secretory polypeptides, it is possible to estimate that 95% of the protein associated with the purified secretion granule membrane is bona fide granule membrane protein. Further analyses indicate that -glutamyltransferase constitutes a marker enzymatic activity shared by granule membranes and the apical domain of the plasma membrane.Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoretograms of radio-iodinated granule membrane polypeptides are characterized by 20–25 radioactive bands of which 5–6 are suggested to be glycoproteins by virtue of their binding of concanavalin A. The limited polypeptide composition of the secretion granule membrane (in comparison to membranes of other cellular compartments) and the high phospholipid-protein ratio (4.4 mg/mg) may reflect the functional specialization of this storage container for secretory proteins.  相似文献   

20.
A fraction containing plasma membrane fragments has been purified from epimastigote forms of Trypanosoma cruzi. Cells were broken by sonic vibration under well defined conditions and membranes were isolated by differential centrifugation and equilibrium centrifugation in sucrose gradients. The co-purification (approximately 10-fold) of adenylyl cyclase and plasma membrane-bound radioactive iodine is highly suggestive of the localization of this enzyme in the plasma membrane of T. cruzi. Determination of succinate cytochrome c reductase and glucose-6-phosphatase activities, as well as of total amounts of DNA and RNA in the purified fraction, indicates a negligible contamination from other cellular organelles. The co-purification of acid phosphatase activity with bound labeled iodine and adenylyl cyclase was taken as circumstantial evidence that part of this enzyme also belongs to the plasma membrane of T. cruzi. Conventional electron miscroscopy and freeze-fracture images of this fraction are consistent with a highly enriched plasma membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号