首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently identified a cell surface cAMP-binding protein by specific photoaffinity labeling of intact Dictyostelium discoideum cells with 8-N3-[32P] cAMP. The major photolabeled protein appears as a doublet (Mr = 40,000-43,000) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. In this study, the doublet is shown to have the characteristics of the cAMP receptor responsible for chemotaxis and cAMP signaling. Both specific photoaffinity labeling of the doublet and binding of 8-N3-[32P]cAMP are saturable (KD = 0.3 microM), the levels of both peak at 5 h, and both are inhibited by cAMP and several cAMP analogs in the same order of potency and with K1 values similar to those measured for inhibition of [3H]cAMP binding. When cAMP-binding activity was partially purified (40-fold) and then photoaffinity labeled, the same bands (Mr = 40,000-43,000) were observed. The relative intensities of the upper and lower bands of the doublet alternated at the same frequency as the spontaneous oscillations in cAMP synthesis. When oscillations were suppressed, the lower band of the doublet predominated. Following addition of cAMP, the relative intensity gradually shifted to the upper band. When cAMP was removed, there was a gradual restoration of the lower band form. We propose that the lower band form of the receptor activates chemotaxis and cAMP signaling and that the upper band form does not. This reversible receptor modification may then be the mechanism of adaptation, the process by which the physiological responses cease to be stimulated by persistent cAMP. Several developmentally regulated genes in D. discoideum have been reported to be induced or suppressed by pulses of cAMP (adaptive regulation) and others by continuous cAMP (nonadaptive regulation). These observations may be explained by the receptor modification reported here if the two forms of the receptor, which bind cAMP with the same affinity, independently influence gene expression.  相似文献   

2.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

3.
A temperature-sensitive mutant of Dictyostelium discoideum has been isolated based on its lack of chemotaxis toward cyclic AMP at the restrictive temperature, 27 degrees C. The mutant develops normally at the permissive temperature, 22 degrees C, but fails to aggregate or complete development at the restrictive temperature. The temperature-sensitive phenotype can be bypassed by allowing cultures to grown into late log phase or to starve for 60-90 min at 22 degrees C prior to a shift to 27 degrees C. At 27 degrees C, the mutant overproduces cell surface cyclic AMP receptors of both high and low affinity and is capable of spontaneous oscillations in light scattering in cell suspensions. Despite its complete lack of morphological development, the mutant undergoes extensive biochemical differentiation. At the onset of starvation, it shows increased levels of N-acetylglucosaminidase, it express cyclic AMP receptors at the normal time and, although somewhat slowly, suppresses those receptors as if aggregation had been achieved. Metabolic pulse labellings with [35S]methionine revealed that the mutant at 27 degrees C displays the same changes in the patterns of newly synthesized proteins observed during the vegetative-to-aggregation and the aggregation-to-slug stages of normal development. The only clear difference from wild type was the failure of the culmination-stage isozyme of beta-glucosidase to appear. The mutant is defective in establishment of intercellular cohesion mechanisms, correlated with poor agglutination by concanavalin A, at the restrictive temperature. The properties of the mutant place severe constraints on models regarding the role of chemoreception and intercellular cohesion in regulation of gene expression.  相似文献   

4.
5.
Chen S  Segall JE 《Eukaryotic cell》2006,5(7):1136-1146
The mitogen-activated protein kinase DdERK2 is critical for cyclic AMP (cAMP) relay and chemotaxis to cAMP and folate, but the details downstream of DdERK2 are unclear. To search for targets of DdERK2 in Dictyostelium discoideum, 32PO4(3-)-labeled protein samples from wild-type and Dderk2- cells were resolved by 2-dimensional electrophoresis. Mass spectrometry was used to identify a novel 45-kDa protein, named EppA (ERK2-dependent phosphoprotein A), as a substrate of DdERK2 in Dictyostelium. Mutation of potential DdERK2 phosphorylation sites demonstrated that phosphorylation on serine 250 of EppA is DdERK2 dependent. Changing serine 250 to alanine delayed development of Dictyostelium and reduced Dictyostelium chemotaxis to cAMP. Although overexpression of EppA had no significant effect on the development or chemotaxis of Dictyostelium, disruption of the eppA gene led to delayed development and reduced chemotactic responses to both cAMP and folate. Both eppA gene disruption and overexpression of EppA carrying the serine 250-to-alanine mutation led to inhibition of intracellular cAMP accumulation in response to chemoattractant cAMP, a pivotal process in Dictyostelium chemotaxis and development. Our studies indicate that EppA regulates extracellular cAMP-induced signal relay and chemotaxis of Dictyostelium.  相似文献   

6.
7.
Extracellular phosphodiesterase for adenosine 3':5'-monophosphate [EC 3.1.4.17] was purified from the supernatant of aggregation phase culture of Dictyostelium discoideum, and two types (type I and type II) of the enzyme were found. The type I enzyme was not absorbed on DEAE-Sephacel at pH 8.5 and had an apparent molecular weight of about 67,000 daltons. In contrast, the type II enzyme was adsorbed on DEAE-Sephacel and had an apparent molecular weight of about 120,000 daltons. The Km values of the two types were similar (2-4 microM). Upon SDS polyacrylamide gel electrophoresis analyses, however, both types produced the same bands with molecular weights of 55,000 and 57,000, indicating that they are two different forms composed of common constituents. During the growth phase, the two types of the enzyme were present in culture supernatant in roughly equal amounts, but type II accumulated predominantly in the aggregation phase, suggesting that the ratio of activity of the two forms is under developmental control. Rabbit antiserum prepared against purified type II enzyme cross-reacted with type I as well as membrane-bound enzyme, indicating that the three classes of the enzyme possess some common sequence.  相似文献   

8.
Cyclic AMP functions as the chemotactic signal during aggregation of amoebae of the cellular slime mold Dictyostelium discoideum. Evidence suggests that cAMP also acts as a regulatory molecule during Dictyostelium multicellular differentiation. We have used ultramicrotechniques and a sensitive radioimmunoassay to measure the levels of cAMP within the culmination stage individual. We show that there is a peak of cAMP at the culmination stage of development and that in the individual at this stage the molecule is localized in a gradient within the spore mass.  相似文献   

9.
10.
In Dictyostelium discoideum both cyclic AMP and cyclic GMP are regulated by chemotactic stimuli. Binding proteins specific for cAMP and cGMP have been found in aggregation competent cells as well as in cells harvested during growth. The activity of binding proteins was, on the average, lower in the growth phase cells. cAMP binding proteins were separated into 3 fractions, whereas the cGMP binding activity appeared in 1 major peak both on DEAE-cellulose and Sephadex G-200. Protein kinase activity was present in most but not all cyclic necleotide binding fractions; evidence for a relationship is however missing.  相似文献   

11.
12.
We have previously reported the detection of cAMP waves within monolayers of aggregating Dictyostelium discoideum cells (K. J. Tomchik and P.N. Devreotes, 1981, Science 212, 443-446). The computer-assisted analysis presented here of the fluorographic images of the cAMP waves reveals (1) all the waves have a consistent width and height; (2) cAMP concentrations within centers of concentric aggregation territories oscillate periodically while at spiral centers the concentration builds up to a plateau value within 2 mm; (3) cells within the region of intersection of two oppositely directed cAMP waves are stimulated to produce more cAMP than those responding to a single wave; (4) cells start to move when the cAMP level begins to increase and cease movement when the peak cAMP concentration reaches the cell.  相似文献   

13.
14.
During Dictyostelium discoideum development, cell-cell communication is mediated through cyclic AMP (cAMP)-induced cAMP synthesis and secretion (cAMP signaling) and cell-cell contact. Cell-cell contact elicits cAMP secretion and modulates the magnitude of a subsequent cAMP signaling response (D. R. Fontana and P. L. Price, Differentiation 41:184-192, 1989), demonstrating that cell-cell contact and cAMP signaling are not independent events. To identify components involved in the contact-mediated modulation of cAMP signaling, amoebal membranes were added to aggregation-competent amoebae in suspension. The membranes from aggregation-competent amoebae inhibited cAMP signaling at all concentrations tested, while the membranes from vegetative amoebae exhibited a concentration-dependent enhancement or inhibition of cAMP signaling. Membrane lipids inhibited cAMP signaling at all concentrations tested. The lipids abolished cAMP signaling by blocking cAMP-induced adenylyl cyclase activation. The membrane lipids also inhibited amoeba-amoeba cohesion at concentrations comparable to those which inhibited cAMP signaling. The phospholipids and neutral lipids decreased cohesion and inhibited the cAMP signaling response. The glycolipid/sulfolipid fraction enhanced cohesion and cAMP signaling. Caffeine, a known inhibitor of cAMP-induced adenylyl cyclase activation, inhibited amoeba-amoeba cohesion. These studies demonstrate that endogenous lipids are capable of modulating amoeba-amoeba cohesion and cAMP-induced activation of the adenylyl cyclase. These results suggest that cohesion may modulate cAMP-induced adenylyl cyclase activation. Because the complete elimination of cohesion is accompanied by the complete elimination of cAMP signaling, these results further suggest that cohesion may be necessary for cAMP-induced adenylyl cyclase activation in D. discoideum.  相似文献   

15.
Abstract Cyclic AMP-induced cAMP and cGMP responses during development of Dictyostelium discoideum were investigated. The cAMP-induced cGMP response is maximal when aggregation is in full progress, and then decreases to about 10% of the maximal level during further multicellular development. The cAMP response increases upon starvation, reaches its maximum at the onset of aggregation, and then decreases to about 8% of the maximum level. The dynamics of the post-aggregative cAMP response are in qualitative agreement with the dynamics of the cAMP relay response in aggregation-competent cells.  相似文献   

16.
Aggregating Dictyostelium discoideum cells possess highly specific receptors for the chemoattractant cAMP on their cell surface. Isolated membranes as well as intact cells are shown to contain a large number of latent cAMP receptors. These are reversibly unmasked in the presence of a high salt concentration (0.1–2 M) or in the presence of millimolar concentrations of Ca2+.  相似文献   

17.
18.
In the first few hours after starvation, the developing cAMP secretory system in Dictyostelium discoideum has been observed to be successively in one of four states: (a) quiescent, (b) excitable (capable of relay), (c) autonomously oscillating, and (d) secreting at a high steady level. A theoretical model is presented which demonstrates that the proximal cause of the transitions between different types of behavior may be slow changes in the activities of the enzymes adenylate cyclase and phosphodiesterase. These changes affect the stability properties of the steady state admitted by the cAMP signalling system. Sustained oscillations develop when the steady state is unstable, whereas relay of cAMP signals occurs upon perturbation of a stable steady state for parameter values close to those which produce oscillations. The developmental path suggested in the adenylate cyclase-phosphodiesterase space for the sequential transitions compares with the time course observed for the synthesis of these enzymes after starvation. It is suggested that there is general significance for the understanding of differentiation in the example given of a state-point following a developmental path in parameter space, moving from one behavioral domain to another, and thereby bringing about shifts in qualitative behavior.  相似文献   

19.
The microelectrode system described in the accompanying paper was used to investigate properties of fields of Dictyostelium discoideum amoebae in late interphase. Cells in the fields were competent to respond chemotactically to, and to relay, a c-AMP signal, but not to produce an aggregative signal autonomously. The experimental results are generally consistent with c-AMP being the sole compound required for chemotaxis and signal relaying. A periodic signal from the microelectrode can initiate and control aggregation and can complete with spontaneously arising aggregates. The electrode was used to measure the refractory period for relaying which decreases from 9 min or more to between 2 and 3 min with increasing developmental age, and to measure thresholds for chemotaxis and signal relaying. The results are discussed in relation to models for the control of aggregation in D. discoideum.  相似文献   

20.
Repeated pulses of cyclic AMP, applied at intervals of 5 min, efficiently induced differentiation in cells of agip 53, a morphogenetic mutant of Dictyostelium discoideum, strain Ax-2. In contrast, pulses applied at intervals of 2 min did not induce cell differentiation. To analyze this phenomenon the hydrolysis of cyclic AMP between the pulses as well as the effect of the pulses on the intracellular concentrations of cyclic GMP were investigated. Experiments performed in the presence of added cyclic AMP was not the reason of the inefficiency of the pulses applied with a 2-min rhythm. Cyclic AMP pulses applied at intervals of 2 min induced discrete increases of the cyclic GMP concentration. Limited time resolution at the level of cyclic GMP cannot account for the inefficiency of the 2-min pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号